Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Christoph Lossen"'
Autor:
Christoph Lossen, Gerhard Pfister
This volume surveys important topics in singularity theory, with a particular focus on computational aspects of the subject. The contributors to this volume include R. O. Buchweitz, Y. A. Drozd, W. Ebeling, H. A. Hamm, Le D. T., I. Luengo, F.-O. Schr
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030033491
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6d7e32a352b7d31cf4ee3638f0532a10
https://doi.org/10.1007/978-3-030-03350-7
https://doi.org/10.1007/978-3-030-03350-7
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030033491
We are ready to accomplish our main task, that is to answer the two following questions concerning equisingular families (ESF) of curves. whether a family of algebraic curves with a prescribed collection of singularities form a nonempty, T-smooth (i.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::96aba834334c0bfec12c4268220d5bb2
https://doi.org/10.1007/978-3-030-03350-7_4
https://doi.org/10.1007/978-3-030-03350-7_4
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030033491
Global deformation theory serves as a key tool in the study of families of singular algebraic varieties, notably, equisingular families of algebraic curves, the main object of this monograph.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::be681218e8b6ef8107828bd6c545872d
https://doi.org/10.1007/978-3-030-03350-7_2
https://doi.org/10.1007/978-3-030-03350-7_2
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030033491
We describe different approaches to prove \(H^1\)-vanishing for ideal sheaves of zero-dimensional schemes. When looking for appropriate \(H^1\)-vanishing theorems for the problems discussed in Chap. 4, one has to be aware that the types of zero-dimen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7418f140223df0f0345a4d077f245158
https://doi.org/10.1007/978-3-030-03350-7_3
https://doi.org/10.1007/978-3-030-03350-7_3
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030033491
This section is devoted to the study of zero-dimensional schemes in a smooth projective surface \(\varSigma \), associated to and concentrated in the (finite) set of singular points of a reduced curve C on \(\varSigma \). In this chapter, a curve (si
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::95af78787f3d0823a6a7c3392c5c8fcf
https://doi.org/10.1007/978-3-030-03350-7_1
https://doi.org/10.1007/978-3-030-03350-7_1
Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical
Publikováno v:
Compositio Mathematica. 143:829-882
In this paper we develop the theory of equisingular deformations of plane curve singularities in arbitrary characteristic. We study equisingular deformations of the parametrization and of the equation and show that the base space of its semiuniveral
Autor:
Christoph Lossen
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 35:71-82
In 1851, Hesse claimed that the Hessian determinant of a homogeneous polynomial f vanishes identically if and only if the projective hypersurface V (f) is a cone. We follow the lines of the 1876 paper of Gordan and Noether to give a proof of Hesse’
Autor:
Christoph Lossen
Publikováno v:
Computing in Science & Engineering. 5:45-55
Singular is free software for polynomial computations. Originally designed for research in mathematics, it features one of the fastest implementations of Buchberger's Grobner basis algorithm, which is the core of many symbolic methods for simplifying