Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Christoph Haenel"'
Autor:
Friedrich L. Bauer, Christoph Haenel
Publikováno v:
Informatik-Spektrum. 31:492-498
Autor:
Jörg Arndt, Christoph Haenel
Ausgehend von der Programmierung moderner Hochleistungsalgorithmen stellen die Autoren das mathematische und programmtechnische Umfeld der Zahl Pi ausführlich dar. So werden zur Berechnung von Pi sowohl die arithmetischen Algorithmen, etwa die FFT-M
Autor:
Jörg Arndt, Christoph Haenel
In the 4,000-year history of research into Pi, results have never been as prolific as present. This book describes, in easy-to-understand language, the latest and most fascinating findings of mathematicians and computer scientists in the field of Pi.
Autor:
Christoph Haenel, Jörg Arndt
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ee7e856160a14faf529dcec9773dafcd
https://doi.org/10.1007/978-3-642-56735-3_16
https://doi.org/10.1007/978-3-642-56735-3_16
Autor:
Jörg Arndt, Christoph Haenel
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
Mathematical analysis of the circle is one of the oldest challenges to have faced mathematicians. Statements as to how the circumference or the area of a circle can be expressed through other variables are already found in the oldest mathematical doc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fa334b3ef2ac18736a553fa0959a4830
https://doi.org/10.1007/978-3-642-56735-3_13
https://doi.org/10.1007/978-3-642-56735-3_13
Autor:
Christoph Haenel, Jörg Arndt
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
The title of the invitation sounded merely interesting: On the nth digit of a transcendental number OR The 10 billionth hexadecimal digit of π is '9'.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::da8ea78b10e96862179ea70873a38f05
https://doi.org/10.1007/978-3-642-56735-3_10
https://doi.org/10.1007/978-3-642-56735-3_10
Autor:
Jörg Arndt, Christoph Haenel
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::af0b058f8baf537992a35268b54b7e0f
https://doi.org/10.1007/978-3-642-56735-3_17
https://doi.org/10.1007/978-3-642-56735-3_17
Autor:
Christoph Haenel, Jörg Arndt
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2d548da3751fc4c59717edad17445991
https://doi.org/10.1007/978-3-642-56735-3_2
https://doi.org/10.1007/978-3-642-56735-3_2
Autor:
Jörg Arndt, Christoph Haenel
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
The shortest approximation for π is simply 3. This is 4.5% away from the true value of π and in fact this approximation occurs twice in the Bible (see page 169). The longest approximation is 206.1 billion digits long and is still not entirely accur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::202e0db1c7574925c875daeff446f69f
https://doi.org/10.1007/978-3-642-56735-3_4
https://doi.org/10.1007/978-3-642-56735-3_4
Autor:
Christoph Haenel, Jörg Arndt
Publikováno v:
Pi — Unleashed ISBN: 9783540665724
One of the fastest method of calculating π, if not the fastest of all, is almost 200 years old. It was invented by the German mathematician Carl Friedrich Gauss (1777-1855) around 1800. It was subsequently forgotten and only unearthed 170 years late
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c85fc22a5a084ace95749e26645e5671
https://doi.org/10.1007/978-3-642-56735-3_7
https://doi.org/10.1007/978-3-642-56735-3_7