Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Christoph Baxa"'
Autor:
Christoph Baxa
Publikováno v:
Proceedings of the American Mathematical Society. 141:4175-4178
Let R R be a recursive ring whose quotient field is not algebraically closed with the property that Hilbert’s Tenth Problem over R R is undecidable, and let A A be a non-empty proper subset of { 0 , 1 , 2 , … } ∪ { ℵ 0 } \{0,1,2,\ldots \}\cup
Autor:
Christoph Baxa
Publikováno v:
Proceedings of the American Mathematical Society. 137:2243-2249
We prove that every γ > log 1+√5/2 is the Levy constant of a transcendental number; i.e., there exists a transcendental number α such that γ = lim 1/m log q m (α), where q m (α) denotes the denominator of the mth converm→∞ gent of α.
Autor:
Christoph Baxa
Publikováno v:
Acta Arithmetica. 119:373-406
Autor:
Christoph Baxa
Publikováno v:
Advances in Applied Mathematics. 32:754-790
We prove a criterion for the transcendence of continued fractions whose partial quotients are contained in a finite set {b1,…,br} of positive integers such that the density of occurrences of bi in the sequence of partial quotients exists for 1⩽i
Autor:
Christoph Baxa
Publikováno v:
Acta Mathematica Hungarica. 100:303-308
Let α be an irrational number and let DN*(α) and DN(α) denote the star-discrepancy and the discrepancy of the sequence (nα)n≥1 mod 1, resp. We study properties of the maps α→ v *(α) = limsupN→∞N DN*(α)/log N and α→v(α) = limsupN→
Autor:
Christoph Baxa
Publikováno v:
Experimental Mathematics. 11:465-468
As a complement to a recent paper by Jade Vinson we study the distribution of the sequence $(\sum_{j=1}^n j^{-s})_{n\ge1}$ modulo 1 with the aim of explaining its different behaviour when $s=\frac12$ and when $\frac12
Autor:
Christoph Baxa
Publikováno v:
Acta Arithmetica. 94:345-363
Autor:
Christoph Baxa
Publikováno v:
Acta Mathematica Hungarica. 83:125-130
Let log $$\log \left( {\left( {1 + \sqrt 5 } \right)/2} \right) \underline{\underline < } X\underline{\underline < } Y$$ . We prove that there exist non-denumerably many pairwise not equivalent irrational numbers α such that $$\mathop {\underline {\
Autor:
J. Schoissengeier, Christoph Baxa
Publikováno v:
Journal of the London Mathematical Society. 57:529-544
The first person to consider the discrepancy of sequences of the type (αnσ)n≥1 (where 0 0 and α2∈Q. Both limN→∞¯ N‐1/2ω+(α) and limN→∞¯ N‐1/2ω‐(α) are expressed as maxima of finitely many numbers which involve class numbers
Autor:
Christoph Baxa
Publikováno v:
Archiv der Mathematik. 70:366-370
Let $ \alpha \ge 0 $ and denote by $ D_N (\alpha) $ the discrepancy of the sequence $ (\alpha \sqrt {n})_{n\ge 1}$ . Employing a recent result of J.Schoisengeier and the author we calculate $\lim \sup \limits_{N\to \infty} N^{-1/2}D_N(\alpha) $ in th