Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Christoforos Mavrogiannis"'
Publikováno v:
ACM Transactions on Human-Robot Interaction. 11:1-37
Mobile robots struggle to integrate seamlessly in crowded environments such as pedestrian scenes, often disrupting human activity. One obstacle preventing their smooth integration is our limited understanding of how humans may perceive and react to r
Publikováno v:
Algorithmic Foundations of Robotics XV ISBN: 9783031210891
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::85038b50ced8874a31d8bd4567371688
https://doi.org/10.1007/978-3-031-21090-7_22
https://doi.org/10.1007/978-3-031-21090-7_22
Autor:
Amal Nanavati, Nick Walker, Lee Taber, Christoforos Mavrogiannis, Leila Takayama, Maya Cakmak, Siddhartha Srinivasa
Publikováno v:
2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
Autor:
Ali Ayub, Marcus Scheunemann, Christoforos Mavrogiannis, Jimin Rhim, Kerstin Dautenhahn, Chrystopher L. Nehaniv, Verena V. Hafner, Daniel Polani
Publikováno v:
2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
Autor:
Christoforos Mavrogiannis, Francesca Baldini, Allan Wang, Dapeng Zhao, Pete Trautman, Aaron Steinfeld, Jean Oh
Robot navigation in crowded public spaces is a complex task that requires addressing a variety of engineering and human factors challenges. These challenges have motivated a great amount of research resulting in important developments for the fields
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4393a473f3e1c2275bcce47a09d05397
http://arxiv.org/abs/2103.05668
http://arxiv.org/abs/2103.05668
Autor:
Christoforos Mavrogiannis, Krishna Balasubramanian, Sriyash Poddar, Anush Gandra, Siddhartha S. Srinivasa
We focus on robot navigation in crowded environments. The challenge of predicting the motion of a crowd around a robot makes it hard to ensure human safety and comfort. Recent approaches often employ end-to-end techniques for robot control or deep ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6011ada684c23e51e1098faa1ff960e
We focus on the problem of analyzing multiagent interactions in traffic domains. Understanding the space of behavior of real-world traffic may offer significant advantages for algorithmic design, data-driven methodologies, and benchmarking. However,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9fb97852d7b363aec52787ee2f35b996