Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Christiane V. R. Hütter"'
Autor:
Sebastian Pirch, Felix Müller, Eugenia Iofinova, Julia Pazmandi, Christiane V. R. Hütter, Martin Chiettini, Celine Sin, Kaan Boztug, Iana Podkosova, Hannes Kaufmann, Jörg Menche
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
Data-rich networks can be difficult to interpret beyond a certain size. Here, the authors introduce a platform that uses virtual reality to allow the visual exploration of large networks, while interfacing with data repositories and other analytical
Externí odkaz:
https://doaj.org/article/a9c0ec8e93de4f90bf7ae10005d40be9
Publikováno v:
Nature Computational Science. 2:84-89
Networks offer an intuitive visual representation of complex systems. Important network characteristics can often be recognized by eye and, in turn, patterns that stand out visually often have a meaningful interpretation. In conventional network layo
Autor:
Celine Sin, Iana Podkosova, Sebastian Pirch, Christiane V. R. Hütter, Julia Pazmandi, Felix Müller, Eugenia Iofinova, Kaan Boztug, Martin Chiettini, Jörg Menche, Hannes Kaufmann
Publikováno v:
Nature Communications
Nature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
Nature Communications, Vol 12, Iss 1, Pp 1-14 (2021)
Networks provide a powerful representation of interacting components within complex systems, making them ideal for visually and analytically exploring big data. However, the size and complexity of many networks render static visualizations on typical