Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Christian Zillinger"'
Autor:
Niklas Knobel, Christian Zillinger
We study the long time asymptotic behavior of the inviscid magnetohydrodynamic equations with magnetic dissipation near a combination of Couette flow and a constant magnetic field. Here we show that there exist nearby explicit global in time low freq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e3e41f4a344b84ea12efb54c6b01c03e
Publikováno v:
Zeitschrift fur Gastroenterologie. 59(12)
Secondary sclerosing cholangitis (SSC) is a severe complication of intensive care treatment in critically ill patients. It is characterized by rapid onset and severe chlolestasis with elevation of gGT. In contrast to primary sclerosing cholangitis, S
Publikováno v:
Journal of Elasticity. 138:1-76
In this article we discuss quantitative properties of convex integration solutions arising in problems modeling shape-memory materials. For a two-dimensional, geometrically linearized model case, the hexagonal-to-rhombic phase transformation, we prov
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
Nonlinearity, 34 (7), 4844–4896
instname
Nonlinearity, 34 (7), 4844–4896
Building on the work in \cite{BCH15,CH18,TIVP17}, in this article we propose and study a simple, geometrically constrained, probabilistic algorithm geared towards capturing some aspects of the nucleation in shape-memory alloys. As a main novelty with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c5631f8c19bd362e2a0a8f88e173a0c
http://hdl.handle.net/20.500.11824/1325
http://hdl.handle.net/20.500.11824/1325
Autor:
Christian Zillinger
Publikováno v:
Journal of nonlinear science, 31 (4), 64
In this article we consider the asymptotic stability of the two-dimensional Boussinesq equations with partial dissipation near a combination of Couette flow and temperature profiles $T(y)$. As a first main result we show that if $T'$ is of size at mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e66cf5994a480cc5ee4c77557c17b263
https://publikationen.bibliothek.kit.edu/1000133890/117372814
https://publikationen.bibliothek.kit.edu/1000133890/117372814
Autor:
Christian Zillinger, Yu Deng
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
instname
We consider the linearized Euler equations around a smooth, bilipschitz shear profile $U(y)$ on $\mathbb{T}_L \times \mathbb{R}$. We construct an explicit flow which exhibits linear inviscid damping for $L$ sufficiently small, but for which damping f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::301a371f1b14081b3d562baeaca31d27
https://hdl.handle.net/20.500.11824/1123
https://hdl.handle.net/20.500.11824/1123
Publikováno v:
SIAM Journal on Mathematical Analysis. 50:3791-3841
In this article we continue our study of higher Sobolev regularity of flexible convex integration solutions to differential inclusions arising from applications in materials sciences. We present a ...
Autor:
Christian Zillinger
Publikováno v:
Transactions of the American Mathematical Society. 369:8799-8855
In this article, we prove linear stability, scattering and inviscid damping with optimal decay rates for the linearized 2D Euler equations around a large class of strictly monotone shear flows, $(U(y),0)$, in a periodic channel under Sobolev perturba
Autor:
Christian Zillinger
Publikováno v:
Nonlinear Analysis
In a recent article Jia established linear inviscid damping in Gevrey regularity for compactly supported Gevrey regular shear flows in a finite channel, which is of great interest in view of existing nonlinear results. In this article we provide an a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::805b3019fb834365bb8deb0cd713f513
http://arxiv.org/abs/1911.00880
http://arxiv.org/abs/1911.00880
Autor:
Christian Zillinger, Francesco Della Porta, Pierluigi Cesana, Barbara Zwicknagl, Angkana Rüland
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
instname
In this article we deduce necessary and sufficient conditions for the presence of `Conti-type', highly symmetric, exactly-stress free constructions in the geometrically non-linear, planar $n$-well problem, generalising results of [CKZ17]. Passing to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ae27eda2f0f9c893a9ff19bbebd52ea2
http://arxiv.org/abs/1904.08820
http://arxiv.org/abs/1904.08820