Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Christian Perron"'
Publikováno v:
AIAA Journal. 61:454-474
This study presents the development of a methodology for the construction of data-driven, parametric, multifidelity reduced-order models to emulate aerodynamic flowfields with nonlinear and discontinuous features. Realistic computational budgets ofte
Publikováno v:
AIAA SCITECH 2023 Forum.
Publikováno v:
Structural and Multidisciplinary Optimization. 65
This work presents the application of a recently developed parametric, non-intrusive, and multi-fidelity reduced-order modeling method on high-dimensional displacement and stress fields arising from the structural analysis of geometries that differ i
Publikováno v:
AIAA AVIATION 2022 Forum.
Autor:
Edan Baltman, Jimmy C. Tai, Jai Ahuja, Brennan Stewart, Christian Perron, Joao De Azevedo, Ted R. Vlady, Dimitri N. Mavris
Publikováno v:
AIAA AVIATION 2022 Forum.
Publikováno v:
AIAA Journal. 58:5389-5407
This paper demonstrates the development of purely data-driven, nonintrusive parametric reduced-order models for the emulation of high-dimensional field outputs using randomized linear algebra techn...
Publikováno v:
AIAA SCITECH 2022 Forum.
Publikováno v:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 477
This work presents the development of a multi-fidelity, parametric and non-intrusive reduced-order modelling method to tackle the problem of achieving an acceptable predictive accuracy under a limited computational budget, i.e. with expensive simulat
Publikováno v:
AIAA AVIATION 2021 FORUM.
Publikováno v:
AIAA AVIATION 2020 FORUM.