Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Christian Le Merdy"'
Autor:
Christian, Le Merdy, Quanhua, Xu
Let T : Lp --> Lp be a positive contraction, with p strictly between 1 and infinity. Assume that T is analytic, that is, there exists a constant K such that \norm{T^n-T^{n-1}} < K/n for any positive integer n. Let q strictly betweeen 2 and infinity a
Externí odkaz:
http://arxiv.org/abs/1103.2874
Autor:
Edward McDonald, Christian Le Merdy
Publikováno v:
Proceedings of the American Mathematical Society. 149:3881-3887
Let 1 > p > ∞ 1>p>\infty and let n ≥ 1 n\geq 1 . It is proved that a function f : R → C f:\mathbb {R}\to \mathbb {C} is n n -times Fréchet differentiable on S p \mathcal {S}^p at every self-adjoint operator if and only if f f is n n -times dif
Publikováno v:
pre
Publikováno v:
Journal of Functional Analysis. 276:3170-3204
Let A be a selfadjoint operator in a separable Hilbert space, K a selfadjoint Hilbert–Schmidt operator, and f ∈ C n ( R ) . We establish that φ ( t ) = f ( A + t K ) − f ( A ) is n-times continuously differentiable on R in the Hilbert–Schmid
Autor:
Christian Le Merdy, Loris Arnold
Publikováno v:
Bulletin of the Australian Mathematical Society. 100:498-506
Let ${\mathcal{D}}$ be a Schauder decomposition on some Banach space $X$. We prove that if ${\mathcal{D}}$ is not $R$-Schauder, then there exists a Ritt operator $T\in B(X)$ which is a multiplier with respect to ${\mathcal{D}}$ such that the set $\{T
Autor:
Christian Le Merdy, Safoura Zadeh
Publikováno v:
Mathematische Nachrichten
Let $1\leq p
Comment: Accepted for publication in Mathematische Nachrichten
Comment: Accepted for publication in Mathematische Nachrichten
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3b7a8d5439cae79bcd951b41c95c3752
http://arxiv.org/abs/2009.05919
http://arxiv.org/abs/2009.05919
Autor:
Olivier Arrigoni, Christian Le Merdy
This paper is devoted to the multivariable $H^\infty$ functional calculus associated with a finite commuting family of sectorial operators on Banach space. First we prove that if $(A_1,\ldots, A_d)$ is such a family, if $A_k$ is $R$-sectorial of $R$-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64a748cfdb2f1f7ec7fe2c29a6784351
http://arxiv.org/abs/2007.04580
http://arxiv.org/abs/2007.04580
Autor:
Olivier Arrigoni, Christian Le Merdy
Publikováno v:
Operators and Matrices. :1055-1090
We introduce and investigate $H^\infty$-functional calculus for commuting finite families of Ritt operators on Banach space $X$. We show that if either $X$ is a Banach lattice or $X$ or $X^*$ has property $(\alpha)$, then a commuting $d$-tuple $(T_1,
Publikováno v:
Transactions of the American Mathematical Society. 369:6899-6933
We show that any bounded analytic semigroup on L p L^p (with 1 > p > ∞ 1>p>\infty ) whose negative generator admits a bounded H ∞ ( Σ θ ) H^{\infty }(\Sigma _\theta ) functional calculus for some θ ∈ ( 0 , π 2 ) \theta \in (0,\frac {\pi }{2
Publikováno v:
Journal of Functional Analysis. 271:1747-1763
We prove the existence of a C2-function f:T→C defined on the unit circle, a unitary operator U and a self-adjoint operator Z in the Hilbert–Schmidt class S2, such that f(eiZU)−f(U)−ddt(f(eitZU))|t=0∉S1, the space of trace class operators. T