Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Christian L. Ritterhoff"'
Autor:
Hao Chen, Matthias A. Blatnik, Christian L. Ritterhoff, Igor Sokolović, Francesca Mirabella, Giada Franceschi, Michele Riva, Michael Schmid, Jan Čechal, Bernd Meyer, Ulrike Diebold, Margareta Wagner
Publikováno v:
ACS Nano. 16:21163-21173
Autor:
Hao, Chen, Matthias A, Blatnik, Christian L, Ritterhoff, Igor, Sokolović, Francesca, Mirabella, Giada, Franceschi, Michele, Riva, Michael, Schmid, Jan, Čechal, Bernd, Meyer, Ulrike, Diebold, Margareta, Wagner
Publikováno v:
ACS nano.
Clean oxide surfaces are generally hydrophilic. Water molecules anchor at undercoordinated surface metal atoms that act as Lewis acid sites, and they are stabilized by H bonds to undercoordinated surface oxygens. The large unit cell of In
Autor:
Christian L. Ritterhoff
Project report on using Kriging for SCF orbital optimization.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66d8810279937881793fa7d46bf4af64
https://doi.org/10.26434/chemrxiv.11950542.v1
https://doi.org/10.26434/chemrxiv.11950542.v1
Autor:
Christian L. Ritterhoff, Gerardo Raggi, Ignacio Fernández Galván, Roland Lindh, Morgane Vacher
Publikováno v:
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation, American Chemical Society, 2020, 16 (6), pp.3989-4001. ⟨10.1021/acs.jctc.0c00257⟩
Journal of Chemical Theory and Computation, American Chemical Society, 2020, 16 (6), pp.3989-4001. ⟨10.1021/acs.jctc.0c00257⟩
Machine learning techniques, specifically Gradient-Enhanced Kriging (GEK), has been implemented for molecular geometry optimization.GEK has many advantages as compared to conventional -- step-restricted second-order truncated -- molecular optimizatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f99109e7712cc51c8d7271407a9df790
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-418833
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-418833