Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Christian Kassel"'
Autor:
Christian Kassel
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2020, ⟨10.1016/j.jalgebra.2020.09.015⟩
Journal of Algebra, Elsevier, 2020, ⟨10.1016/j.jalgebra.2020.09.015⟩
We show that the Steinberg group $\text{St}(C_2,{\mathbb Z})$ associated with the Lie type $C_2$ and with integer coefficients can be realized as a quotient of the braid group $B_6$ by one relation. As an application we give a new braid-like presenta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5a8ae3e9e38c4579ab1c07ca4a36bc4
https://hal.archives-ouvertes.fr/hal-02880734
https://hal.archives-ouvertes.fr/hal-02880734
Publikováno v:
Ramanujan Journal
Ramanujan Journal, Springer Verlag, 2018, 46 (3), pp.633-655. ⟨10.1007/s11139-018-0011-1⟩
Ramanujan Journal, Springer Verlag, 2018, 46 (3), pp.633-655. ⟨10.1007/s11139-018-0011-1⟩
We compute the coefficients of the polynomials $C_n(q)$ defined by the equation \begin{equation*} 1 + \sum_{n\geq 1} \, \frac{C_n(q)}{q^n} \, t^n = \prod_{i\geq 1}\, \frac{(1-t^i)^2}{1-(q+q^{-1})t^i + t^{2i}} \, . \end{equation*} As an application we
Publikováno v:
Archiv der Mathematik. 108:453-463
We compute the Fourier coefficients of the weight one modular form \(\eta (z)\eta (2z)\eta (3z)/\eta (6z)\) in terms of the number of representations of an integer as a sum of two squares. We deduce a relation between this modular form and translates
Publikováno v:
The Michigan Mathematical Journal
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2018, 67 (4), pp.715-741. ⟨10.1307/mmj/1529114453⟩
Michigan Math. J. 67, iss. 4 (2018), 715-741
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2018, 67 (4), pp.715-741. ⟨10.1307/mmj/1529114453⟩
Michigan Math. J. 67, iss. 4 (2018), 715-741
We establish an explicit formula for the number $C_n(q)$ of ideals of codimension $n$ of the algebra ${\mathbb F}_q[x,y,x^{-1}, y^{-1}]$ of Laurent polynomials in two variables over a finite field of cardinality $q$. This number is a palindromic poly
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8d640e8daa65970af2726ed60f966f8
https://hal.archives-ouvertes.fr/hal-02880825
https://hal.archives-ouvertes.fr/hal-02880825
Autor:
Julien Bichon, Christian Kassel
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2010, 323, pp.2556-2590. ⟨10.1016/j.jalgebra.2009.12.032⟩
Journal of Algebra, 2010, 323, pp.2556-2590. ⟨10.1016/j.jalgebra.2009.12.032⟩
Journal of Algebra, Elsevier, 2010, 323, pp.2556-2590. ⟨10.1016/j.jalgebra.2009.12.032⟩
Journal of Algebra, 2010, 323, pp.2556-2590. ⟨10.1016/j.jalgebra.2009.12.032⟩
To any Hopf algebra H we associate two commutative Hopf algebras, which we call the first and second lazy homology Hopf algebras of H. These algebras are related to the lazy cohomology groups based on the so-called lazy cocycles of H by universal coe
Autor:
Christian Kassel, Adrien Kassel
Publikováno v:
Journal of Mathematics and Music. 4:31-43
We slightly modify Hellegouarch's axiomatic definition of a musical scale and give conditions for such scales to exist and to be uniquely defined. We also present an algorithm computing all elements of a scale.
Autor:
Christian Kassel
Publikováno v:
9th Summer School on Geometric, Algebraic and Topological Methods for Quantum Field Theory
9th Summer School on Geometric, Algebraic and Topological Methods for Quantum Field Theory, Jul 2015, Villa de Leyva, Colombia. pp.75-133, ⟨10.1007/978-3-319-65427-0_3⟩
Quantization, Geometry and Noncommutative Structures in Mathematics and Physics ISBN: 9783319654263
9th Summer School on Geometric, Algebraic and Topological Methods for Quantum Field Theory, Jul 2015, Villa de Leyva, Colombia. pp.75-133, ⟨10.1007/978-3-319-65427-0_3⟩
Quantization, Geometry and Noncommutative Structures in Mathematics and Physics ISBN: 9783319654263
These are the expanded notes of a course given at the Summer school "Geometric, topological and algebraic methods for quantum field theory" held at Villa de Leyva, Colombia in July 2015. We first give an introduction to non-commutative geometry and t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac642337f4183bf3303c1b2a0cd5d003
https://hal.archives-ouvertes.fr/hal-01937789
https://hal.archives-ouvertes.fr/hal-01937789
Autor:
Akira Masuoka, Christian Kassel
Publikováno v:
Journal of Noncommutative Geometry
Journal of Noncommutative Geometry, European Mathematical Society, 2016, 10 (2), pp.405-428. ⟨10.4171/JNCG/237⟩
Journal of Noncommutative Geometry, European Mathematical Society, 2016, 10 (2), pp.405-428
Journal of Noncommutative Geometry, European Mathematical Society, 2016, 10 (2), pp.405-428. ⟨10.4171/JNCG/237⟩
Journal of Noncommutative Geometry, European Mathematical Society, 2016, 10 (2), pp.405-428
In previous work, Eli Aljadeff and the first-named author attached an algebra B_H of rational fractions to each Hopf algebra H. The generalized Noether problem is the following: for which finite-dimensional Hopf algebra H is B_H the localization of a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91e8a07c9afc318c19df070b60cd0312
Publikováno v:
Algebra & Number Theory
Algebra & Number Theory, Mathematical Sciences Publishers 2014, pp.8-2 (2014), 497--511. ⟨10.2140/ant.2014.8.497⟩
Algebra Number Theory 8, no. 2 (2014), 497-511
Algebra & Number Theory, Mathematical Sciences Publishers 2014, pp.8-2 (2014), 497--511. ⟨10.2140/ant.2014.8.497⟩
Algebra Number Theory 8, no. 2 (2014), 497-511
Following and generalizing a construction by Kontsevich, we associate a zeta function to any matrix with entries in a ring of noncommutative Laurent polynomials with integer coefficients. We show that such a zeta function is an algebraic function.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6be3d2220f5fc316220110450083d4dd
https://hal.archives-ouvertes.fr/hal-00817686
https://hal.archives-ouvertes.fr/hal-00817686
Autor:
Christian Kassel, Vladimir Turaev
Publikováno v:
Pacific Journal of Mathematics
Pacific Journal of Mathematics, 2000, 195, pp.297-369
Pacific Journal of Mathematics, 2000, 195, pp.297-369
For any finite-dimensional Lie bialgebra $g$, we construct a bialgebra $A_{u,v}(g)$ over the ring $C[u][[v]]$, which quantizes simultaneously the universal enveloping bialgebra $U({g})$, the bialgebra dual to $U(g^*)$, and the symmetric bialgebra $S(