Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Christian G. Simader"'
Autor:
Christian G. Simader
Publikováno v:
Le Matematiche, Vol 54, Iss 3, Pp 149-178 (1999)
See directly the article
Externí odkaz:
https://doaj.org/article/818794872e4d4afcb1c3533a74626d7c
Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains
Publikováno v:
ANNALI DELL'UNIVERSITA' DI FERRARA. 60:245-262
Consider a general domain \(\varOmega \subseteq {\mathbb {R}}^n, n\ge 2\), and let \(1 0\). This estimate was introduced by Simader and Sohr (Mathematical Problems Relating to the Navier–Stokes Equations. Series on Advances in Mathematics for Appli
Autor:
Christian G. Simader
Publikováno v:
Applicable Analysis. 90:215-226
We study the weak L 2-solutions of the Dirichlet problem for a Stokes-like system of fourth order in a bounded Lipschitz domain G ⊂ ℝ n (n ≥ 2). For this purpose we study the operator (where ) and its adjoint. Further we determine a subspace su
Autor:
Remigio Russo, Christian G. Simader
Publikováno v:
Ricerche di Matematica. 58:315-328
A necessary and sufficient condition is given on the boundary datum in order to the Dirichlet problem for an elliptic equation in a two-dimensional exterior Lipschitz domain has a unique solution with a finite Dirichlet integral which converges unifo
Autor:
Christian G. Simader
Publikováno v:
Mathematische Nachrichten. 279:415-430
For boundary data ϕ ∈ W1,2(G ) (where G ⊂ ℝN is a bounded domain) it is an easy exercise to prove the existence of weak L2-solutions to the Dirichlet problem “Δu = 0 in G, u |∂G = ϕ |∂G”. By means of Weyl's Lemma it is readily seen t
Autor:
Christian G. Simader, Wolf von Wahl
Publikováno v:
Analysis. 26:1-7
Autor:
Remigio Russo, Christian G. Simader
Publikováno v:
Journal of Mathematical Fluid Mechanics. 8:64-76
We study the boundary-value problem associated with the Oseen system in the exterior of m Lipschitz domains of an euclidean point space \(\mathcal{E}_n (n = 2,3).\) We show, among other things, that there are two positive constants \(\epsilon\) and
Publikováno v:
Mathematische Annalen. 331:41-74
We develop a theory for a general class of very weak solutions to stationary Stokes and Navier-Stokes equations in a bounded domain Ω with boundary ∂Ω of class C2,1, corresponding to boundary data in the distribution space W−1/ q , q (∂Ω), 1
Autor:
Pavel Drábek, Christian G. Simader
Publikováno v:
Mathematica Bohemica. 127:103-122
We discuss how the choice of the functional setting and the definition of the weak solution affect the existence and uniqueness of the solution to the equation \[ -\Delta _p u = f \ \text{in} \ \Omega , \] where $\Omega $ is a very general domain in
Autor:
Christian G. Simader, Joachim Naumann
Publikováno v:
Mathematica Bohemica. 124:315-328