Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Christian Elbracht"'
Autor:
Nathan Bowler, Christian Elbracht, Joshua Erde, J. Pascal Gollin, Karl Heuer, Max Pitz, Maximilian Teegen
Publikováno v:
Bowler, N, Elbracht, C, Erde, J, Gollin, J P, Heuer, K, Pitz, M & Teegen, M 2023, ' Ubiquity of graphs with nowhere-linear end structure ', Journal of Graph Theory, vol. 103, no. 3, pp. 564-598 . https://doi.org/10.1002/jgt.22936
A graph G is said to be ≼‐ubiquitous, where ≼ is the minor relation between graphs, if whenever Γ is a graph with nG≼Γ for all n ∈ N, then one also has ℵ0G≼Γ, where αG is the disjoint union of α many copies of G. A well‐known con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8775e79a01ed862d347111b49838a9d
https://orbit.dtu.dk/en/publications/d0e9178e-2ca7-42c9-838a-cd6def61275c
https://orbit.dtu.dk/en/publications/d0e9178e-2ca7-42c9-838a-cd6def61275c
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 173:297-327
We present infinite analogues of our splinter lemma from [Trees of tangles in abstract separation systems, arXiv:1909.09030]. From these we derive several tree-of-tangles-type theorems for infinite graphs and infinite abstract separation systems.
Autor:
Nathan Bowler, Christian Elbracht, Joshua Erde, J. Pascal Gollin, Karl Heuer, Max Pitz, Maximilian Teegen
Publikováno v:
Bowler, N, Elbracht, C, Erde, J, Gollin, J P, Heuer, K, Pitz, M & Teegen, M 2022, ' Topological ubiquity of trees ', Journal of Combinatorial Theory. Series B, vol. 157, pp. 70-95 . https://doi.org/10.1016/j.jctb.2022.05.011
Let ⊲ be a relation between graphs. We say a graph G is ⊲-ubiquitous if whenever Γ is a graph with for all , then one also has , where αG is the disjoint union of α many copies of G. The Ubiquity Conjecture of Andreae, a well-known open proble
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::17441dc997eab0020026bb9331ceaf94
https://orbit.dtu.dk/en/publications/59da881b-541b-487e-8fe2-9d29ef437e3c
https://orbit.dtu.dk/en/publications/59da881b-541b-487e-8fe2-9d29ef437e3c
We demonstrate the versatility of the tangle-tree duality theorem for abstract separation systems by using it to prove tree-of-tangles theorems. This approach allows us to strengthen some of the existing tree-of-tangles theorems by bounding the node
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5234deb0d9ab284771a19c2d32b6fc2
Autor:
Christian Elbracht, Jakob Kneip
We show that every structurally submodular separation system admits a canonical tree set which distinguishes its tangles.
Comment: 11 pages, version 2 adds an additional preliminary section and slightly strengthens the main result, this version
Comment: 11 pages, version 2 adds an additional preliminary section and slightly strengthens the main result, this version
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::97d00ddc1644322e8b30d0d986e4b297
Publikováno v:
Journal of Combinatorial Theory, Series A. 180:105425
We prove canonical and non-canonical tree-of-tangles theorems for abstract separation systems that are merely structurally submodular. Our results imply all known tree-of-tangles theorems for graphs, matroids and abstract separation systems with subm
We show that, given a $ k $-tangle $ \tau $ in a graph $ G $, there always exists a weight function $ w\colon V(G)\to\mathbb{N} $ such that a separation $ (A,B) $ of $ G $ of order $ {
Comment: 9 pages. Journal version, includes new section on e
Comment: 9 pages. Journal version, includes new section on e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ec52745c41c9d6b408df3ba41f65e01
http://arxiv.org/abs/1811.06821
http://arxiv.org/abs/1811.06821