Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Chris Tensmeyer"'
Autor:
Yufan Zhou, Ruiyi Zhang, Jiuxiang Gu, Chris Tensmeyer, Tong Yu, Changyou Chen, Jinhui Xu, Tong Sun
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 36:3580-3588
Using natural-language feedback to guide image generation and manipulation can greatly lower the required efforts and skills. This topic has received increased attention in recent years through refinement of Generative Adversarial Networks (GANs); ho
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031250682
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::609eb2a98526d744891f780745325413
https://doi.org/10.1007/978-3-031-25069-9_19
https://doi.org/10.1007/978-3-031-25069-9_19
Autor:
Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, Tong Sun
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Autor:
Chris Tensmeyer, Tony Martinez
Publikováno v:
Pattern Recognition. 87:1-16
Identifying the type of a scanned form image greatly facilitates automated processing, including field segmentation and field recognition. Contrary to most prior work, we focus on unsupervised type identification, where the possible form types for a
Publikováno v:
Document Analysis and Recognition – ICDAR 2021 ISBN: 9783030865481
ICDAR (1)
ICDAR (1)
We address the problem of form understanding: finding text entities and the relationships/links between them in form images. The proposed FUDGE model formulates this problem on a graph of text elements (the vertices) and uses a Graph Convolutional Ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::03af7e717c60c5014d6b069c2b5f2bda
https://doi.org/10.1007/978-3-030-86549-8_27
https://doi.org/10.1007/978-3-030-86549-8_27
Autor:
Venu Govindaraju, Hrituraj Singh, Chris Tensmeyer, Srirangaraj Setlur, Kenny Davila, Sumit Shekhar
Publikováno v:
Pattern Recognition. ICPR International Workshops and Challenges ISBN: 9783030687922
ICPR Workshops (8)
ICPR Workshops (8)
This work summarizes the results of the second Competition on Harvesting Raw Tables from Infographics (ICPR 2020 CHART-Infographics). Chart Recognition is difficult and multifaceted, so for this competition we divide the process into the following ta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d2aea779f5d40fc01da2b7ebb5b125bf
https://doi.org/10.1007/978-3-030-68793-9_27
https://doi.org/10.1007/978-3-030-68793-9_27
Autor:
Varun Manjunatha, Curtis Wigington, Chris Tensmeyer, Kai Li, Nikolaos Barmpalios, Vlad I. Morariu, Yun Fu, Handong Zhao, Tong Sun
Publikováno v:
CVPR
Decomposing images of document pages into high-level semantic regions (e.g., figures, tables, paragraphs), document object detection (DOD) is fundamental for downstream tasks like intelligent document editing and understanding. DOD remains a challeng
Autor:
Chris Tensmeyer, Tony Martinez
Publikováno v:
SN Computer Science. 1
This review provides a comprehensive view of the field of historical document image binarization with a focus on the contributions made in the last decade. After the introduction of a standard benchmark dataset with the 2009 Document Image Binarizati
Publikováno v:
2020 IEEE Winter Conference on Applications of Computer Vision (WACV).
Autor:
Curtis Wigington, Chris Tensmeyer
Publikováno v:
ICDAR
Training Handwritten Text Recognition (HTR) models typically requires large amounts of labeled data which often are line or page images with corresponding line-level ground truth (GT) transcriptions. Many digital collections have page-level transcrip