Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Chris Sweeney"'
Publikováno v:
Integrated Environmental Assessment and Management.
Autor:
Yuxin Hou, Tianwei Shen, Tsun-Yi Yang, Daniel DeTone, Hyo Jin Kim, Chris Sweeney, Richard Newcombe
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031250651
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::477886634d31a37a0085add5177b98b2
https://doi.org/10.1007/978-3-031-25066-8_36
https://doi.org/10.1007/978-3-031-25066-8_36
Autor:
Daniel Barath, Chris Sweeney
Publikováno v:
2022 26th International Conference on Pattern Recognition (ICPR).
Autor:
Hugo Germain, Daniel DeTone, Geoffrey Pascoe, Tanner Schmidt, David Novotny, Richard Newcombe, Chris Sweeney, Richard Szeliski, Vasileios Balntas
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
Autor:
Enric Corona, Tomas Hodan, Minh Vo, Francesc Moreno-Noguer, Chris Sweeney, Richard Newcombe, Lingni Ma
This paper proposes a do-it-all neural model of human hands, named LISA. The model can capture accurate hand shape and appearance, generalize to arbitrary hand subjects, provide dense surface correspondences, be reconstructed from images in the wild
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5bf20ab6585b4733a08fd49f0b79ccb
http://arxiv.org/abs/2204.01695
http://arxiv.org/abs/2204.01695
Autor:
Fangyin Wei, Rohan Chabra, Lingni Ma, Christoph Lassner, Michael Zollhoefer, Szymon Rusinkiewicz, Chris Sweeney, Richard Newcombe, Mira Slavcheva
Learning geometry, motion, and appearance priors of object classes is important for the solution of a large variety of computer vision problems. While the majority of approaches has focused on static objects, dynamic objects, especially with controll
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::599fc14e07ea10319337d548375edbb5
Autonomous vehicles operate in highly dynamic environments necessitating an accurate assessment of which aspects of a scene are moving and where they are moving to. A popular approach to 3D motion estimation, termed scene flow, is to employ 3D point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3013e54655a5d6d0894a082ff48c0476
Reducing sentiment polarity for demographic attributes in word embeddings using adversarial learning
Autor:
Chris Sweeney, Maryam Najafian
Publikováno v:
FAT*
The use of word embedding models in sentiment analysis has gained a lot of traction in the Natural Language Processing (NLP) community. However, many inherently neutral word vectors describing demographic identity have unintended implicit correlation
Publikováno v:
CVPR
We propose a system that uses a convolution neural network (CNN) to estimate depth from a stereo pair followed by volumetric fusion of the predicted depth maps to produce a 3D reconstruction of a scene. Our proposed depth refinement architecture, pre
Publikováno v:
MIT web domain
ICRA
ICRA
Modern robotic systems are very complex and need to be tested in simulations with detailed sensor noise models to effectively verify robotic behavior. Depth imagery in particular comes with significant noise in the form of scene-dependent pixel-wise
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7db31544a38aa87a1a410fc3c03c4272
https://hdl.handle.net/1721.1/137637
https://hdl.handle.net/1721.1/137637