Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Chongjia Ni"'
Publikováno v:
ICASSP
With the recent development of end-to-end models in speech recognition, there have been more interests in adapting these models for online speech recognition. However, using end-to-end models for online speech recognition is known to suffer from an e
Publikováno v:
INTERSPEECH
Publikováno v:
INTERSPEECH
Publikováno v:
INTERSPEECH
Autor:
Chongjia Ni, Haihua Xu, Van Tung Pham, Yerbolat Khassanov, Zhiping Zeng, Eng Siong Chng, Bin Ma
Publikováno v:
ISCSLP
In this work, we study leveraging extra text data to improve low-resource end-to-end ASR under cross-lingual transfer learning setting. To this end, we extend our prior work [1], and propose a hybrid Transformer-LSTM based architecture. This architec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48803f448350bddd18797ae66fab9efd
http://arxiv.org/abs/2005.10407
http://arxiv.org/abs/2005.10407
Autor:
Aiying Zhang, Chongjia Ni
Publikováno v:
IEICE Transactions on Information and Systems. :1591-1604
Autor:
Eng Siong Chng, Haizhou Li, Zhiping Zeng, Van Tung Pham, Bin Ma, Yerbolat Khassanov, Haihua Xu, Chongjia Ni
Publikováno v:
ICASSP
The attention-based end-to-end (E2E) automatic speech recognition (ASR) architecture allows for joint optimization of acoustic and language models within a single network. However, in a vanilla E2E ASR architecture, the decoder sub-network (subnet),
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0197ab43ada5420ebcc26dce65d4773a
http://arxiv.org/abs/1912.00863
http://arxiv.org/abs/1912.00863
Publikováno v:
INTERSPEECH
Autor:
Haihua Xu, Van Tung Pham, Bin Ma, Eng Siong Chng, Yerbolat Khassanov, Zhiping Zeng, Chongjia Ni
Publikováno v:
INTERSPEECH
The lack of code-switch training data is one of the major concerns in the development of end-to-end code-switching automatic speech recognition (ASR) models. In this work, we propose a method to train an improved end-to-end code-switching ASR using o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6989083dfa54f99b01b0f1facc5adc4b
http://arxiv.org/abs/1904.03802
http://arxiv.org/abs/1904.03802
Publikováno v:
Journal of Signal Processing Systems. 82:197-206
A keyword-sensitive language modeling framework for spoken keyword search (KWS) is proposed to combine the advantages of conventional keyword-filler based and large vocabulary continuous speech recognition (LVCSR) based KWS systems. The proposed fram