Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Chong, Linsen"'
Autor:
Chong, Linsen
Thesis: Ph. D. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 145-151).
In this thesis
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 145-151).
In this thesis
Externí odkaz:
http://hdl.handle.net/1721.1/111440
Autor:
Chong, Linsen
This research is focused on driver behavior in traffic, especially during car-following situations and safety critical events. Driving behavior is considered as a human decision process in this research which provides opportunities for an artificial
Externí odkaz:
http://hdl.handle.net/10919/76834
http://scholar.lib.vt.edu/theses/available/etd-07282011-000937/
http://scholar.lib.vt.edu/theses/available/etd-07282011-000937/
Autor:
Chong, Linsen, Osorio, Carolina
Publikováno v:
Transportation Science, 2018 May 01. 52(3), 637-656.
Externí odkaz:
https://www.jstor.org/stable/48747917
Autor:
Osorio, Carolina, Chong, Linsen
Publikováno v:
Transportation Science, 2015 Aug 01. 49(3), 623-636.
Externí odkaz:
http://www.jstor.org/stable/43666762
Publikováno v:
In Transportation Research Part C July 2013 32:207-223
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Osorio, Carolina, Chong, Linsen
Publikováno v:
Proceedings of the Winter Simulation Conference (2012); 12/9/2012, p1-11, 11p
Combined car-following and unsafe event trajectory simulation using agent based modeling techniques.
Publikováno v:
Proceedings of the Winter Simulation Conference (2012); 12/9/2012, p1-10, 10p
Autor:
Linsen Chong, Carolina Osorio
Publikováno v:
MIT Web Domain
This paper addresses large-scale urban transportation optimization problems with time-dependent continuous decision variables, a stochastic simulation-based objective function, and general analytical differentiable constraints. We propose a metamodel