Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Chołoniewski, Jan"'
Publikováno v:
Phys. Rev. E 104, 024309 (2021)
When dealing with spreading processes on networks it can be of the utmost importance to test the reliability of data and identify potential unobserved spreading paths. In this paper we address these problems and propose methods for hidden layer ident
Externí odkaz:
http://arxiv.org/abs/2101.11758
We show that activity of online news outlets follows a temporal fluctuation scaling law and we recover this feature using an independent cascade model augmented with a varying hype parameter representing a viral potential of an original article. We u
Externí odkaz:
http://arxiv.org/abs/1810.06425
Learning is a complex cognitive process that depends not only on an individual capability of knowledge absorption but it can be also influenced by various group interactions and by the structure of an academic curriculum. We have applied methods of s
Externí odkaz:
http://arxiv.org/abs/1604.07074
Autor:
Chołoniewski, Jan, Chmiel, Anna, Sienkiewicz, Julian, Hołyst, Janusz, Küster, Dennis, Kappas, Arvid
High frequency psychophysiological data create a challenge for quantitative modeling based on Big Data tools since they reflect the complexity of processes taking place in human body and its responses to external events. Here we present studies of fl
Externí odkaz:
http://arxiv.org/abs/1601.01649
We demonstrate the power of data mining techniques for the analysis of collective social dynamics within British Tweets during the Olympic Games 2012. The classification accuracy of online activities related to the successes of British athletes signi
Externí odkaz:
http://arxiv.org/abs/1412.7184
Publikováno v:
In Physica A: Statistical Mechanics and its Applications 1 June 2019 523:129-144
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.