Zobrazeno 1 - 10
of 150
pro vyhledávání: '"Cho, Yunhi"'
Autor:
Cho, Yunhi, Kim, Seonhwa
We prove that every three-dimensional polyhedron is uniquely determined by its dihedral angles and edge lengths, even if nonconvex or self-intersecting, under two plausible sufficient conditions: (i) the polyhedron has only convex faces and (ii) it d
Externí odkaz:
http://arxiv.org/abs/2307.14769
We generalize R. Riley's study about parabolic representations of two bridge knot groups to the general knots in $S^3$. We utilize the parabolic quandle method for general knot diagrams and adopt symplectic quandle for better investigation, which giv
Externí odkaz:
http://arxiv.org/abs/2204.00319
Autor:
Cho, Yunhi, Yoon, Seokbeom
Publikováno v:
Bull. Korean Math. Soc. 2018 Vol. 55, No. 1, 239--250
A knot complement admits a pseudo-hyperbolic structure by solving Thurston's gluing equations for an octahedral decomposition. It is known that a solution to these equations can be described in terms of region variables, also called $w$-variables. In
Externí odkaz:
http://arxiv.org/abs/1702.07878
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kim, Seonhwa, Cho, Yunhi
When the number of non-triangular faces adjacent to a vertex $v$ is less than or equal to three, the vertex $v$ will be called (\emph{combinatorially}) \emph{rigid}. We study the number of rigid vertices and suggest a conjecture on a classification o
Externí odkaz:
http://arxiv.org/abs/1610.06425
Autor:
Cho, Yunhi, Kim, Seonhwa
There is an elegant expression for the volume of hypercube $[0,1]^n$ clipped by a single hyperplane. In the article the formula is generalized to the case of more than one hyperplane. An important foundation for the result is Lawrence's formula and a
Externí odkaz:
http://arxiv.org/abs/1512.07768
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cho, Yunhi
Publikováno v:
Bull.Korean Math. Soc. 46(2009), No.6, pp. 1099-1133
We study the hyperbolic cosine and sine laws in the extended hyperbolic space which contains hyperbolic space as a subset and is an analytic continuation of the hyperbolic space. And we also study the spherical cosine and sine laws in the extended de
Externí odkaz:
http://arxiv.org/abs/0712.1877
Autor:
Cho, Yunhi, Kim, Hyuk
Publikováno v:
J. Korean Math. Soc., vol. 43 (2006), pp. 1143-1158
We consider the projectivization of Minkowski space with the analytic continuation of the hyperbolic metric and call this an extended hyperbolic space. We can measure the volume of a domain lying across the boundary of the hyperbolic space using an a
Externí odkaz:
http://arxiv.org/abs/math/0612374
Autor:
Cho, Yunhi, Kim, Hyuk
We define and study an extended hyperbolic space which contains the hyperbolic space and de Sitter space as subspaces and which is obtained as an analytic continuation of the hyperbolic space. The construction of the extended space gives rise to a co
Externí odkaz:
http://arxiv.org/abs/math/0612372