Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Chitturi, Bhadrachalam"'
A permutation $\pi$ over alphabet $\Sigma = {1,2,3,\ldots,n}$, is a sequence where every element $x$ in $\Sigma$ occurs exactly once. $S_n$ is the symmetric group consisting of all permutations of length $n$ defined over $\Sigma$. $I_n$ = $(1, 2, 3,\
Externí odkaz:
http://arxiv.org/abs/2002.07342
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
P., Jayakumar, Chitturi, Bhadrachalam
Publikováno v:
In Computers in Biology and Medicine October 2023 165
Autor:
Chitturi, Bhadrachalam, S, Indulekha T
The set of all permutations with $n$ symbols is a symmetric group denoted by $S_n$. A transposition tree, $T$, is a spanning tree over its $n$ vertices $V_T=${$1, 2, 3, \ldots n$} where the vertices are the positions of a permutation $\pi$ and $\pi$
Externí odkaz:
http://arxiv.org/abs/1811.07443
Autor:
Chitturi, Bhadrachalam, Pai, Jayakumar
Given a set $P$ of $n$ points in $R^{d}$, a tour is a closed simple path that covers all the given points, i.e. a Hamiltonian cycle. % In $P$ if no three points are collinear then the points are said to be in general position. A \textit{link} is a li
Externí odkaz:
http://arxiv.org/abs/1810.00529
Autor:
Chitturi, Bhadrachalam, Das, Priyanshu
The diameter of an undirected unweighted graph $G=(V,E)$ is the maximum value of the distance from any vertex $u$ to another vertex $v$ for $u,v \in V$ where distance i.e. $d(u,v)$ is the length of the shortest path from $u$ to $v$ in $G$. DAG, is a
Externí odkaz:
http://arxiv.org/abs/1711.03256
Autor:
Chitturi, Bhadrachalam
The independent set on a graph $G=(V,E)$ is a subset of $V$ such that no two vertices in the subset have an edge between them. The MIS problem on $G$ seeks to identify an independent set with maximum cardinality, i.e. maximum independent set or MIS.
Externí odkaz:
http://arxiv.org/abs/1705.06425
Publikováno v:
Mathematics (2227-7390); Sep2024, Vol. 12 Issue 17, p2620, 15p
Autor:
Pai, Jayakumar, Chitturi, Bhadrachalam
Publikováno v:
In Theoretical Computer Science 4 November 2021 891:105-115
A permutation on an alphabet $ \Sigma $, is a sequence where every element in $ \Sigma $ occurs precisely once. Given a permutation $ \pi $= ($\pi_{1} $, $ \pi_{2} $, $ \pi_{3} $,....., $ \pi_{n} $) over the alphabet $ \Sigma $ =$\{ $0, 1, . . . , n$
Externí odkaz:
http://arxiv.org/abs/1601.04469