Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Chistyakov, Vyacheslav V."'
Let $T\subset\mathbb{R}$ and $(X,\mathcal{U})$ be a uniform space with an at most countable gage of pseudometrics $\{d_p:p\in\mathcal{P}\}$ of the uniformity $\mathcal{U}$. Given $f\in X^T$ (=the family of all functions from $T$ into $X$), the approx
Externí odkaz:
http://arxiv.org/abs/2010.11410
Autor:
Chistyakov, Vyacheslav V.
Publikováno v:
SpringerBriefs in Optimization, Springer Nature Switzerland, Cham, 2021, xiii+86 pp
Let $T\subset\mathbb{R}$, $M$ be a metric space with metric $d$, and $M^T$ be the set of all functions mapping $T$ into $M$. Given $f\in M^T$, we study the properties of the approximate variation $\{V_\varepsilon(f)\}_{\varepsilon>0}$, where $V_\vare
Externí odkaz:
http://arxiv.org/abs/1910.08490
Autor:
Chistyakov, Vyacheslav V.
Publikováno v:
Journal of Mathematical Analysis and Applications, v. 478, no. 2 (2019), 421-444
Under certain initial conditions, we prove the existence of set-valued selectors of univariate compact-valued multifunctions of bounded (Jordan) variation when the notion of variation is defined taking into account only the Pompeiu asymmetric excess
Externí odkaz:
http://arxiv.org/abs/1901.09722
Publikováno v:
Studia Mathematica, v. 238, no. 1 (2017), p. 37-57
Given $T\subset\mathbb{R}$ and a metric space $M$, we introduce a nondecreasing sequence of pseudometrics $\{\nu_n\}$ on $M^T$ (the set of all functions from $T$ into $M$), called the \emph{joint modulus of variation}. We prove that if two sequences
Externí odkaz:
http://arxiv.org/abs/1601.07298
Publikováno v:
Journal of Optimization Theory and Applications 167, no. 2 (2015), 585-616
The paper addresses the tolerance approach to the sensitivity analysis of optimal solutions to the nonlinear optimization problem of the form $$\mbox{$\bigoplus\limits_{y\in S}C(y)\to\min$\quad over\quad $S\in\mathcal{S}$,}$$ where $\mathcal{S}$ is a
Externí odkaz:
http://arxiv.org/abs/1309.4242
Autor:
Chistyakov, Vyacheslav V.
Publikováno v:
Models, Algorithms, and Technologies for Network Analysis. Springer Proceedings in Mathematics & Statistics, Vol. 32. Springer Science+Business Media, New York, 2013, pp. 65-92
The notion of a (metric) modular on an arbitrary set and the corresponding modular space, more general than a metric space, were introduced and studied recently by the author [V. V. Chistyakov, Metric modulars and their application, Dokl. Math. 73(1)
Externí odkaz:
http://arxiv.org/abs/1112.5561
Publikováno v:
Journal of Mathematical Analysis and Applications, Vol. 370, No. 2 (2010), 672-686 (Part I), and Vol. 369, No. 1 (2010), 82-93 (Part II)
Given a map from a rectangle in the n-dimensional real Euclidean space into a metric semigroup, we introduce a concept of the total variation, which generalizes a similar concept due to T. H. Hildebrandt (1963) for real functions of two variables and
Externí odkaz:
http://arxiv.org/abs/1001.0451
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 August 2017 452(2):970-989