Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Chinta, Gautam"'
This paper illustrates the utility of the heat kernel on $\mathbb{Z}$ as the discrete analogue of the Gaussian density function. It is the two-variable function $K_{\mathbb{Z}}(t,x)=e^{-2t}I_{x}(2t)$ involving a Bessel function and variables $x\in\ma
Externí odkaz:
http://arxiv.org/abs/2409.14344
In this paper we develop the parametrix approach for constructing the heat kernel on a graph $G$. In particular, we highlight two specific cases. First, we consider the case when $G$ is embedded in a Eulidean domain or manifold $\Omega$, and we use a
Externí odkaz:
http://arxiv.org/abs/2308.04174
We consider orthogonally invariant probability measures on $\mathrm{GL}_n(\mathbb{R})$ and compare the mean of the logs of the moduli of eigenvalues of the matrices to the Lyapunov exponents of random matrix products independently drawn with respect
Externí odkaz:
http://arxiv.org/abs/2206.01091
Autor:
Chinta, Gautam, Júnior, Valdir Pereira
We study the number of two-dimensional sublattices of $\mathbb{Z^4}$ of a fixed covolume and construct the associated Dirichlet series. The latter is shown to be related to Eisenstein series on both $GL_4$ and its metaplectic double cover.
Comme
Comme
Externí odkaz:
http://arxiv.org/abs/2110.13997
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Indagationes Mathematicae May 2023 34(3):643-659
In this paper we study subrings of $\mathbb Z^{n+k}$ of co-rank $k$.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/1812.09564
We give an asymptotic formula for the number of sublattices $\Lambda \subseteq \mathbb{Z}^d$ of index at most $X$ for which $\mathbb{Z}^d/\Lambda$ has rank at most $m$, answering a question of Nguyen and Shparlinski. We compare this result to recent
Externí odkaz:
http://arxiv.org/abs/1708.08547
We form real-analytic Eisenstein series twisted by Manin's noncommutative modular symbols. After developing their basic properties, these series are shown to have meromorphic continuations to the entire complex plane and satisfy functional equations
Externí odkaz:
http://arxiv.org/abs/1704.02305
Publikováno v:
Ergodic Theory & Dynamical Systems; Aug2024, Vol. 44 Issue 8, p2063-2079, 17p