Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Ching-Sung Liu"'
Autor:
Ching-Sung Liu
Publikováno v:
Mathematics, Vol 12, Iss 16, p 2546 (2024)
In this paper, we introduce an inexact Noda iteration method featuring inner and outer iterations for computing the smallest eigenvalue and corresponding eigenvector of an irreducible monotone matrix. The proposed method includes two primary relaxati
Externí odkaz:
https://doaj.org/article/e818f210191b4c25a6659ff899868bbd
Autor:
Ching-Sung Liu, 劉青松
95
At first, recall Krylov subspace which generated by matrix A and vector v. And then introduce a kid of procedure for solving quadratic eigenvalue problem (QEP) which is called RSTO procedure. Because of the structure preserving of RSTO proced
At first, recall Krylov subspace which generated by matrix A and vector v. And then introduce a kid of procedure for solving quadratic eigenvalue problem (QEP) which is called RSTO procedure. Because of the structure preserving of RSTO proced
Externí odkaz:
http://ndltd.ncl.edu.tw/handle/23940641903521505405
Autor:
Chang-En Du, Ching-Sung Liu
Publikováno v:
SIAM Journal on Scientific Computing. 44:A2370-A2385
Autor:
Yi-Shin Cheng, Ching-Sung Liu
Publikováno v:
Annals of Mathematical Sciences and Applications. 7:281-300
Autor:
Yueh-Cheng Kuo, Ching-Sung Liu
Publikováno v:
Journal of Computational and Applied Mathematics. 424:114954
Autor:
Ching-Sung Liu
Publikováno v:
Journal of Scientific Computing. 91
Publikováno v:
Applied Mathematics Letters. 136:108454
Publikováno v:
Numerical Linear Algebra with Applications. 28
Publikováno v:
Journal of Computational and Applied Mathematics. 340:71-88
In this paper, a homotopy continuation method for the computation of nonnegative Z-/H-eigenpairs of a nonnegative tensor is presented. We show that the homotopy continuation method is guaranteed to compute a nonnegative eigenpair. Additionally, using
Autor:
Ching-Sung Liu, Che-Rung Lee
Publikováno v:
BIT Numerical Mathematics. 57:1083-1108
In this paper, we present the inexact structure preserving Arnoldi methods for structured eigenvalue problems. They are called structure preserving because the computed eigenvalues and eigenvectors can preserve the desirable properties of the structu