Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Chindris, Calin"'
Autor:
Chindris, Calin, Derksen, Harm
The Anantharam-Jog-Nair inequality [AJN22] in Information Theory provides a unifying approach to the information-theoretic form of the Brascamp-Lieb inequality [CCE09] and the Entropy Power inequality [ZF93]. In this paper, we use methods from Quiver
Externí odkaz:
http://arxiv.org/abs/2306.06790
Let $Q$ be a bipartite quiver with vertex set $Q_0$ such that the number of arrows between any source vertex and any sink vertex is constant. Let $\beta=(\beta(x))_{x \in Q_0}$ be a dimension vector of $Q$ with positive integer coordinates. Let $rep(
Externí odkaz:
http://arxiv.org/abs/2211.01990
Autor:
Chindris, Calin, Ismaeel, Jasim
In this paper, we view matrix frames as representations of quivers and study them within the general framework of quiver invariant theory. We are thus led to consider the large class of semi-stable matrix frames. Within this class, we are particularl
Externí odkaz:
http://arxiv.org/abs/2104.11310
Autor:
Chindris, Calin, Kline, Daniel
A central problem in algebraic complexity, posed by J. Edmonds, asks to decide if the span of a given $l$-tuple $\V=(\V_1, \ldots, \V_l)$ of $N \times N$ complex matrices contains a non-singular matrix. In this paper, we provide a quiver invariant th
Externí odkaz:
http://arxiv.org/abs/2008.13648
Autor:
Chindris, Calin, Kline, Daniel
Publikováno v:
Journal of Algebra, Volume 577, 1 July 2021, Pages 210-236
We consider the problem of simultaneously finding lower-dimensional subspace structures in a given $m$-tuple of possibly corrupted, high-dimensional data sets all of the same size. We refer to this problem as simultaneous robust subspace recovery (SR
Externí odkaz:
http://arxiv.org/abs/2003.02962
Autor:
Chindris, Calin, Derksen, Harm
Let $Q$ be a bipartite quiver, $V$ a real representation of $Q$, and $\sigma$ an integral weight of $Q$ orthogonal to the dimension vector of $V$. Guided by quiver invariant theoretic considerations, we introduce the Brascamp-Lieb operator $T_{V,\sig
Externí odkaz:
http://arxiv.org/abs/1905.04783
Autor:
Chindris, Calin, Kline, Daniel
Publikováno v:
In Journal of Pure and Applied Algebra March 2023 227(3)
Publikováno v:
International Mathematics Research Notices, Volume 2020, Issue 2, January 2020, Pages 403-421
We show that the irreducible components of any moduli space of semistable representations of a special biserial algebra are always isomorphic to products of projective spaces of various dimensions. This is done by showing that irreducible components
Externí odkaz:
http://arxiv.org/abs/1706.07022
Autor:
Chindris, Calin, Kinser, Ryan
Publikováno v:
Mathematische Annalen, 372(1), 555-580, 2018
Consider a finite-dimensional algebra $A$ and any of its moduli spaces $\mathcal{M}(A,\mathbf{d})^{ss}_{\theta}$ of representations. We prove a decomposition theorem which relates any irreducible component of $\mathcal{M}(A,\mathbf{d})^{ss}_{\theta}$
Externí odkaz:
http://arxiv.org/abs/1705.10255
Autor:
Chindris, Calin, Kline, Daniel
Publikováno v:
In Journal of Algebra 1 July 2021 577:210-236