Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Chimere S. Anabanti"'
Autor:
Chimere S. Anabanti, Jack Schmidt
Publikováno v:
Communications in Algebra. :1-5
Publikováno v:
Quaestiones Mathematicae. 45:901-910
A subgroup H of a group G is called a power subgroup of G if there exists a non-negative integer m such that H= . Any subgroup of G which is not a power subgroup is called a nonpower subgroup of G. Zhou, Shi and Duan, in a 2006 paper, asked whether f
Publikováno v:
Comptes Rendus. Mathématique. 358:1227-1230
A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes
Autor:
Chimere S. Anabanti
Publikováno v:
Comptes Rendus. Mathématique. 358:1135-1138
Publikováno v:
Communications in Algebra. 49:1415-1421
In 1979, Herzog conjectured that two finite simple groups containing the same number of involutions have the same order. Zarrin, in a 2018 published paper, disproved Herzog’s conjecture with a coun...
Autor:
Chimere S. Anabanti
Publikováno v:
Quaestiones Mathematicae. 44:1019-1021
We classify the filled groups of order pqr for primes p, q and r. Our result confirms a conjecture of Anabanti, Erskine and Hart for these examples of soluble groups.
Autor:
Chimere S. Anabanti
Publikováno v:
Quaestiones Mathematicae. 44:301-305
We recently answered the three questions of Bertram in the finite abelian case in https://link.springer.com/article/10.1007/s00200-018-0364-0, Applicable Algebra in Engineering, Communication and C...
Autor:
Chimere S. Anabanti
Every locally maximal product-free set \(S\) in a finite group \(G\) satisfies \(G=S\cup SS \cup S^{-1}S \cup SS^{-1}\cup \sqrt{S}\), where \(SS=\{xy\mid x,y\in S\}\), \(S^{-1}S=\{x^{-1}y\mid x,y\in S\}\), \(SS^{-1}=\{xy^{-1}\mid x,y\in S\}\) and \(\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4420dd0bb5f50963378d105d5d85638d
http://dspace.nbuv.gov.ua/handle/123456789/188705
http://dspace.nbuv.gov.ua/handle/123456789/188705
Publikováno v:
Communications in Algebra
Mazurov asked whether a group of exponent dividing 12, which is generated by x, y and z subject to the relations x3=y2=z2=(xy)3=(yz)3=1, has order at most 12. We show that if such a group is finite, then the answer is yes.
Autor:
Sarah Hart, Chimere S. Anabanti
Publikováno v:
International Journal of Combinatorics.
Let G be a group and S a nonempty subset of G. Then, S is product-free if ab∉S for all a,b∈S. We say S is a locally maximal product-free set if S is product-free and not properly contained in any other product-free set. It is natural to ask wheth