Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Chikako Mese"'
Autor:
Chikako Mese, Georgios Daskalopoulos
Publikováno v:
Proceedings of the American Mathematical Society. 150:411-422
Autor:
Chikako Mese, Georgios Daskalopoulos
Publikováno v:
Inventiones mathematicae. 224:791-916
We prove the holomorphic rigidity conjecture of Teichmuller space which loosely speaking states that the action of the mapping class group uniquely determines the Teichmuller space as a complex manifold. The method of proof is through harmonic maps.
Publikováno v:
Ergodic Theory and Dynamical Systems. 39:1843-1856
Harmonic map theory is used to show that a convex cocompact surface group action on a $\text{CAT}(-1)$ metric space fixes a convex copy of the hyperbolic plane (i.e. the action is Fuchsian) if and only if the Hausdorff dimension of the limit set of t
Autor:
Chikako Mese, Georgios Daskalopoulos
Publikováno v:
Transactions of the American Mathematical Society. 369:2917-2950
Autor:
Georgios Daskalopoulos, Chikako Mese
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:53-96
This is the second in a series of papers ([7] and [6] are the others) that studies the behavior of harmonic maps into the Weil–Petersson completion 𝒯 ¯ {\overline{\mathcal{T}}} of Teichmüller space. The boundary of 𝒯 ¯ {\overline{\mathcal{
Autor:
Ailana Fraser, Chikako Mese, Shing-Tung Yau, Christina Sormani, Lan-Hsuan Huang, Fernando C. Marques, William P. Minicozzi, Hubert L. Bray, Karen Uhlenbeck, Michael Eichmair, Rob Kusner
Publikováno v:
Notices of the American Mathematical Society. 65:1
Autor:
Georgios Daskalopoulos, Chikako Mese
The authors prove that the singular set of a harmonic map from a smooth Riemammian domain to a Riemannian DM-complex is of Hausdorff codimension at least two. They also explore monotonicity formulas and an order gap theorem for approximately harmonic
The purpose of this paper is to extend the Donaldson-Corlette theorem to the case of vector bundles over cell complexes. We define the notion of a vector bundle and a Higgs bundle over a complex, and describe the associated Betti, de Rham and Higgs m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68750d975447f2297b98e93589cdedf2
http://arxiv.org/abs/1605.04625
http://arxiv.org/abs/1605.04625
Autor:
Georgios Daskalopoulos, Chikako Mese
Publikováno v:
Memoirs of the American Mathematical Society. 239
We determine regularity results for energy minimizing maps from an n-dimensional Riemannian polyhedral complex X into a CAT(1) space. Provided that the metric on X is Lipschitz regular, we prove Holder regularity with Holder constant and exponent dep
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f57a9c5352c703a8f94821b9b3aa637b