Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Chien-Xuan Tran"'
Publikováno v:
New Frontiers in Artificial Intelligence ISBN: 9783319509525
JSAI-isAI Workshops
JSAI-isAI Workshops
In the context of the Competition on Legal Information Extraction/Entailment (COLIEE), we propose a method comprising the necessary steps for finding relevant documents to a legal question and deciding on textual entailment evidence to provide a corr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2d104a1c6d05a4f14bbcbb1923a2a9b4
https://doi.org/10.1007/978-3-319-50953-2_21
https://doi.org/10.1007/978-3-319-50953-2_21
Publikováno v:
Natural Language Processing and Information Systems ISBN: 9783319595689
NLDB
NLDB
This paper presents SoCRFSum, a summary model which integrates user-generated content as comments and third-party sources such as relevant articles of a Web document to generate a high-quality summarization. The summarization was formulated as a sequ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dbe02d0e710bb3fc3a8ae44c533738d3
https://doi.org/10.1007/978-3-319-59569-6_54
https://doi.org/10.1007/978-3-319-59569-6_54
Publikováno v:
ICTAI
This paper presents a method named SoSVMRank, which integrates the social information of a Web document to generate a high-quality summarization. In order to do that, the summarization was formulated as a learning to rank task, in which the order of
Publikováno v:
CIKM
This paper presents a dataset named SoLSCSum for social context summarization. The dataset includes 157 open-domain articles along with their comments collected from Yahoo News. The articles and their comments were manually annotated by two annotator
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
International Journal on Artificial Intelligence Tools. 26:1760017
User-generated content such as comments or tweets (also called by social information) following a Web document provides additional information for enriching the content of an event mentioned in sentences. This paper presents a framework named SoSVMRa