Zobrazeno 1 - 10
of 550
pro vyhledávání: '"Chien, Edward"'
Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Lavenant et al. arXiv:2102.09204 addressed this challenging pro
Externí odkaz:
http://arxiv.org/abs/2406.07475
Mixup is a popular regularization technique for training deep neural networks that improves generalization and increases robustness to certain distribution shifts. It perturbs input training data in the direction of other randomly-chosen instances in
Externí odkaz:
http://arxiv.org/abs/2106.02933
Autor:
Reddy, Uma M., Sandoval, Grecio J., Tita, Alan T.N., Silver, Robert M., Mallett, Gail, Hill, Kim, El-Sayed, Yasser Y., Rice, Madeline Murguia, Wapner, Ronald J., Rouse, Dwight J., Saade, George R., Thorp, John M., Jr, Chauhan, Suneet P., Costantine, Maged M., Chien, Edward K., Casey, Brian M., Srinivas, Sindhu K., Swamy, Geeta K., Simhan, Hyagriv N., Macones, George A., Grobman, William A.
Publikováno v:
In American Journal of Obstetrics & Gynecology MFM September 2024
Autor:
Grantz, Katherine L., Lee, Wesley, Mack, Lauren M., Sanz Cortes, Magdalena, Goncalves, Luis F., Espinoza, Jimmy, Newman, Roger B., Grobman, William A., Wapner, Ronald J., Fuchs, Karin, D'Alton, Mary E., Skupski, Daniel W., Owen, John, Sciscione, Anthony, Wing, Deborah A., Nageotte, Michael P., Ranzini, Angela C., Chien, Edward K., Craigo, Sabrina, Sherman, Seth, Gore-Langton, Robert E., He, Dian, Tekola-Ayele, Fasil, Zhang, Cuilin, Grewal, Jagteshwar, Chen, Zhen
Publikováno v:
In American Journal of Obstetrics and Gynecology May 2024
We present a method for designing smooth cross fields on surfaces that automatically align to sharp features of an underlying geometry. Our approach introduces a novel class of energies based on a representation of cross fields in the spherical harmo
Externí odkaz:
http://arxiv.org/abs/2007.09740
We study a robust alternative to empirical risk minimization called distributionally robust learning (DRL), in which one learns to perform against an adversary who can choose the data distribution from a specified set of distributions. We illustrate
Externí odkaz:
http://arxiv.org/abs/1912.07729
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Monteiller, Pierre, Claici, Sebastian, Chien, Edward, Mirzazadeh, Farzaneh, Solomon, Justin, Yurochkin, Mikhail
Label switching is a phenomenon arising in mixture model posterior inference that prevents one from meaningfully assessing posterior statistics using standard Monte Carlo procedures. This issue arises due to invariance of the posterior under actions
Externí odkaz:
http://arxiv.org/abs/1911.02053
The ability to measure similarity between documents enables intelligent summarization and analysis of large corpora. Past distances between documents suffer from either an inability to incorporate semantic similarities between words or from scalabili
Externí odkaz:
http://arxiv.org/abs/1906.10827
Autor:
Chien, Edward Chaoho
OBJECTIVE: To explore a novel virtual inspection approach with a 3D metrology software to provide a non-destructive in situ analysis in digital workflow. Also, to evaluate the fit discrepancies of lithium disilicate crowns by using such a novel virtu
Externí odkaz:
https://hdl.handle.net/2144/26384