Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Chiara Boccato"'
Autor:
Chiara Boccato, Robert Seiringer
We consider a gas of bosonic particles confined in a box with Neumann boundary conditions. We prove Bose-Einstein condensation in the Gross-Pitaevskii regime, with an optimal bound on the condensate depletion. Our lower bound for the ground state ene
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42682df1919eab57f9e44227fad47112
https://hdl.handle.net/2434/931712
https://hdl.handle.net/2434/931712
Autor:
Niels Benedikter, Chiara Boccato
Publikováno v:
Encyclopedia of Complexity and Systems Science ISBN: 9783642277375
Perturbation Theory ISBN: 9781071626207
Perturbation Theory ISBN: 9781071626207
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b43c5dc4c2697f2987ca4aab7880f5a
https://doi.org/10.1007/978-3-642-27737-5_768-1
https://doi.org/10.1007/978-3-642-27737-5_768-1
Autor:
Chiara Boccato
Publikováno v:
Reviews in Mathematical Physics
We consider a gas of interacting bosons trapped in a box of side length one in the Gross-Pitaevskii limit. We review the proof of the validity of Bogoliubov's prediction for the ground state energy and the low-energy excitation spectrum. This note is
We consider systems of bosons trapped in a box, in the Gross-Pitaevskii regime. We show that low-energy states exhibit complete Bose-Einstein condensation with an optimal bound on the number of orthogonal excitations. This extends recent results obta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65ba2f14832418ebdae64400a3dd205a
https://www.zora.uzh.ch/id/eprint/180478/
https://www.zora.uzh.ch/id/eprint/180478/
Publikováno v:
Acta Math. 222, no. 2 (2019), 219-335
We consider Bose gases consisting of $N$ particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of order $N^{-1}$ (Gross–Pitaevskii regime). We determine the ground state energy and the low-e
Publikováno v:
Communications in Mathematical Physics. 359:975-1026
We consider a gas of $N$ bosons in a box with volume one interacting through a two-body potential with scattering length of order $N^{-1}$ (Gross-Pitaevskii limit). Assuming the (unscaled) potential to be sufficiently small, we show that the ground s
Publikováno v:
Annales Henri Poincaré. 18:113-191
We consider the many body quantum dynamics of systems of bosons interacting through a two-body potential $N^{3\beta-1} V (N^\beta x)$, scaling with the number of particles $N$. For $0< \beta < 1$, we obtain a norm-approximation of the evolution of an
We consider systems of $N$ bosons in a box with volume one, interacting through a repulsive two-body potential of the form $\kappa N^{3\beta-1} V(N^\beta x)$. For all $0 < \beta < 1$, and for sufficiently small coupling constant $\kappa > 0$, we esta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a04b4588265ab1242da23a9278d6ef9d
Autor:
'Chiara Boccato
Publikováno v:
Serena Cenatiempo