Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Chión S"'
Publikováno v:
Psychology Research and Behavior Management, Vol Volume 15, Pp 3297-3312 (2022)
Ibett Jácome,* Sergio Chión* CENTRUM Católica Graduate Business School, Pontificia Universidad Católica del Perú, Lima, Perú*These authors contributed equally to this workCorrespondence: Ibett Jácome, CENTRUM Católica Graduate Bus
Externí odkaz:
https://doaj.org/article/f82fe5adb725438db36c57e678d315a2
This paper presents two results in the realm of conformal Kaehler submanifolds. These are conformal immersions of Kaehler manifolds into the standard flat Euclidean space. The proofs are obtained by making a rather strong use of several facts and tec
Externí odkaz:
http://arxiv.org/abs/2310.09072
Autor:
Chion, S., Dajczer, M.
The local classification of Kaehler submanifolds $M^{2n}$ of the hyperbolic space $\mathbb{H}^{2n+p}$ with low codimension $2\leq p\leq n-1$ under only intrinsic assumptions remains a wide open problem. The situation is quite different for submanifol
Externí odkaz:
http://arxiv.org/abs/2210.09438
Autor:
Chion, S., Dajczer, M.
Let $f\colon M^{2n}\to\mathbb{R}^{2n+4}$ be an isometric immersion of a Kaehler manifold of complex dimension $n\geq 5$ into Euclidean space with complex rank at least $5$ everywhere. Our main result is that, along each connected component of an open
Externí odkaz:
http://arxiv.org/abs/2204.11287
Autor:
Chion, S., Dajczer, M.
We show that generic rank conditions on the second fundamental form of an isometric immersion $f\colon M^{2n}\to\mathbb{R}^{2n+p}$ of a Kaehler manifold of complex dimension $n\geq 2$ into Euclidean space with low codimension $p$ implies that the sub
Externí odkaz:
http://arxiv.org/abs/2112.13061
Autor:
Chion, S., Tojeiro, R.
In this article we introduce the notion of a Ribaucour partial tube and use it to derive several applications. These are based on a characterization of Ribaucour partial tubes as the immersions of a product of two manifolds into a space form such tha
Externí odkaz:
http://arxiv.org/abs/2105.13842
Let $f\colon M^{2n}\to\mathbb{R}^{2n+p}$ denote an isometric immersion of a Kaehler manifold of complex dimension $n\geq 2$ into Euclidean space with codimension $p$. If $2p\leq 2n-1$, we show that generic rank conditions on the second fundamental fo
Externí odkaz:
http://arxiv.org/abs/1909.09989
Let $f\colon M^{2n}\to\mathbb{R}^{2n+\ell}$, $n \geq 5$, denote a conformal immersion into Euclidean space with codimension $\ell$ of a Kaehler manifold of complex dimension $n$ and free of flat points. For codimensions $\ell=1,2$ we show that such a
Externí odkaz:
http://arxiv.org/abs/1909.09990
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Differential Geometry and its Applications June 2022 82