Zobrazeno 1 - 10
of 709
pro vyhledávání: '"Chetty, Indrin"'
Autor:
Khanmohammadi, Reza, Ghanem, Ahmed I., Verdecchia, Kyle, Hall, Ryan, Elshaikh, Mohamed, Movsas, Benjamin, Bagher-Ebadian, Hassan, Luo, Bing, Chetty, Indrin J., Alhanai, Tuka, Thind, Kundan, Ghassemi, Mohammad M.
Large Language Models (LLMs) offer significant potential for clinical symptom extraction, but their deployment in healthcare settings is constrained by privacy concerns, computational limitations, and operational costs. This study investigates the op
Externí odkaz:
http://arxiv.org/abs/2408.04775
Autor:
Khanmohammadi, Reza, Ghanem, Ahmed I, Verdecchia, Kyle, Hall, Ryan, Elshaikh, Mohamed, Movsas, Benjamin, Bagher-Ebadian, Hassan, Chetty, Indrin, Ghassemi, Mohammad M., Thind, Kundan
This study introduces a novel teacher-student architecture utilizing Large Language Models (LLMs) to improve prostate cancer radiotherapy symptom extraction from clinical notes. Mixtral, the student model, initially extracts symptoms, followed by GPT
Externí odkaz:
http://arxiv.org/abs/2402.04075
Autor:
Khanmohammadi, Reza, Ghassemi, Mohammad M., Verdecchia, Kyle, Ghanem, Ahmed I., Bing, Luo, Chetty, Indrin J., Bagher-Ebadian, Hassan, Siddiqui, Farzan, Elshaikh, Mohamed, Movsas, Benjamin, Thind, Kundan
Natural Language Processing (NLP) is a key technique for developing Medical Artificial Intelligence (AI) systems that leverage Electronic Health Record (EHR) data to build diagnostic and prognostic models. NLP enables the conversion of unstructured c
Externí odkaz:
http://arxiv.org/abs/2311.02205
Autor:
Li, Chengyin, Khanduri, Prashant, Qiang, Yao, Sultan, Rafi Ibn, Chetty, Indrin, Zhu, Dongxiao
Segment Anything Model (SAM) is one of the pioneering prompt-based foundation models for image segmentation and has been rapidly adopted for various medical imaging applications. However, in clinical settings, creating effective prompts is notably ch
Externí odkaz:
http://arxiv.org/abs/2308.14936
Autor:
Li, Chengyin, Qiang, Yao, Sultan, Rafi Ibn, Bagher-Ebadian, Hassan, Khanduri, Prashant, Chetty, Indrin J., Zhu, Dongxiao
Computed Tomography (CT) based precise prostate segmentation for treatment planning is challenging due to (1) the unclear boundary of the prostate derived from CT's poor soft tissue contrast and (2) the limitation of convolutional neural network-base
Externí odkaz:
http://arxiv.org/abs/2210.03189
Autor:
Zong, Weiwei, Carver, Eric, Zhu, Simeng, Schaff, Eric, Chapman, Daniel, Lee, Joon, Ebadian, Hassan Bagher, Chetty, Indrin, Movsas, Benjamin, Wen, Winston, Alafif, Tarik, Zong, Xiangyun
Automatic diagnosis of malignant prostate cancer patients from mpMRI has been studied heavily in the past years. Model interpretation and domain drift have been the main road blocks for clinical utilization. As an extension from our previous work whe
Externí odkaz:
http://arxiv.org/abs/2206.06235
Autor:
Simone, Charles B., II, Serebrenik, Artur A., Gore, Elizabeth M., Mohindra, Pranshu *, Brown, Stephen L., Wang, Ding, Chetty, Indrin J., Vujaskovic, Zeljko *, Menon, Smitha, Thompson, Jonathan, Fine, Gil, Kaytor, Michael D., Movsas, Benjamin
Publikováno v:
In International Journal of Radiation Oncology, Biology, Physics 1 February 2024 118(2):404-414
Autor:
Chetty, Indrin J. *, Cai, Bin, Chuong, Michael D., Dawes, Samantha L., Hall, William A., Helms, Amanda R., Kirby, Suzanne, Laugeman, Eric, Mierzwa, Michelle, Pursley, Jennifer, Ray, Xenia, Subashi, Ergys, Henke, Lauren E.
Publikováno v:
In International Journal of Radiation Oncology, Biology, Physics October 2024
Publikováno v:
In Advances in Radiation Oncology January 2024 9(1)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.