Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Cherubini, Felix"'
Working in an abstract, homotopy type theory based axiomatization of the higher Zariski-topos called synthetic algebraic geometry, we show that the Picard group of projective n-space is the integers, the automorphism group of projective n-space is PG
Externí odkaz:
http://arxiv.org/abs/2405.13916
This is a foundation for algebraic geometry, developed internal to the Zariski topos, building on the work of Kock and Blechschmidt. The Zariski topos consists of sheaves on the site opposite to the category of finitely presented algebras over a fixe
Externí odkaz:
http://arxiv.org/abs/2307.00073
Autor:
Cherubini, Felix, Rijke, Egbert
Any modality in homotopy type theory gives rise to an orthogonal factorization system of which the left class is stable under pullbacks. We show that there is a second orthogonal factorization system associated to any modality, of which the left clas
Externí odkaz:
http://arxiv.org/abs/2003.09713
Autor:
Cherubini, Felix
This article constructs the moduli stack of torsionfree $G$-structures in homotopy type theory with one monadic modality. This yields a construction of this moduli stack for any $\infty$-topos equipped with any stable factorization systems. In the in
Externí odkaz:
http://arxiv.org/abs/1806.05966
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Cherubini, Felix, Rijke, Egbert
Publikováno v:
Mathematical Structures in Computer Science; Apr2022, Vol. 32 Issue 4, p363-391, 29p