Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Chernyshev, Vsevolod"'
We propose the conjecture that every graph $G$ of order $n$ with less than $3n-6$ edges has a vertex cut that induces a forest. Maximal planar graphs do not have such vertex cuts and show that the density condition would be best possible. We verify t
Externí odkaz:
http://arxiv.org/abs/2409.17724
In this paper, we propose an fast method for crack detection in 3D computed tomography (CT) images. Our approach combines the Maximal Hessian Entry filter and a Deep-First Search algorithm-based technique to strike a balance between computational com
Externí odkaz:
http://arxiv.org/abs/2407.09534
Autor:
Beaudou, Laurent, Bergé, Pierre, Chernyshev, Vsevolod, Dailly, Antoine, Gerard, Yan, Lagoutte, Aurélie, Limouzy, Vincent, Pastor, Lucas
We study the PSPACE-complete $k$-Canadian Traveller Problem, where a weighted graph $G=(V,E,\omega)$ with a source $s\in V$ and a target $t\in V$ are given. This problem also has a hidden input $E_* \subsetneq E$ of cardinality at most $k$ representi
Externí odkaz:
http://arxiv.org/abs/2403.01872
Autor:
Pyatko, Daniil, Chernyshev, Vsevolod
In this paper, the leading term of the asymptotics of the number of possible final positions of a random walk on a directed Hamiltonian metric graph is found. Consideration of such dynamical systems could be motivated by problems of propagation of na
Externí odkaz:
http://arxiv.org/abs/2112.13822
The problem of counting the number of waves arriving at the vertex of a polyhedron is motivated by physics. In the article it was solved for the case of Platonic solid using three nontrivial results from number theory. This growth turns out to be sub
Externí odkaz:
http://arxiv.org/abs/2112.12066
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 March 2024 531(2) Part 2
Asymptotics of the Number of Endpoints of a Random Walk on a Certain Class of Directed Metric Graphs
A certain class of directed metric graphs is considered. Asymptotics for a number of possible endpoints of a random walk at large times is found.
Externí odkaz:
http://arxiv.org/abs/2101.04184
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Eliseev, Andrew, Chernyshev, Vsevolod
In this paper we study dynamical systems of intervals moving on incommensurable metric graphs. They can be generally viewed as congruent intervals moving around some graph with unit velocity and propagating on all respective incident edges whenever s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::89b52f9fdab7c0459ceddbabbccad1d4
https://hal.science/hal-03938845
https://hal.science/hal-03938845
Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph
Publikováno v:
In Electronic Notes in Discrete Mathematics December 2018 70:31-35