Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Chernousov, V."'
Autor:
Kirichenko, K. Yu., Pamirsky, I. E., Timkin, P. D., Kotelnikov, D. D., Pogodaev, A. V., Chernousov, V. A., Gridasov, A. V., Kholodov, A. S., Parshin, S. G., Golokhvast, K. S., Nawaz, M. A.
Publikováno v:
BioNanoScience; Mar2025, Vol. 15 Issue 1, p1-10, 10p
We define and classify the analogues of the affine Kac-Moody Lie algebras for the ring corresponding to the complex projective line minus three points. The classification is given in terms of Grothendieck's dessins d'enfants. We also study the questi
Externí odkaz:
http://arxiv.org/abs/1311.7097
Publikováno v:
Bulletin Mathematical Sciences 4, 2 (2014) 281-324
The conjugacy of split Cartan subalgebras in the finite dimensional simple case (Chevalley) and in the symmetrizable Kac-Moody case (Peterson-Kac) are fundamental results of the theory of Lie algebras. Among the Kac-Moody Lie algebras the affine alge
Externí odkaz:
http://arxiv.org/abs/1109.5236
Publikováno v:
Manuscripta Math. 126 (2008), no. 4, 465--480.
Let G be a reductive affine group scheme defined over a semilocal ring k. Assume that either G is semisimple or k is normal and noetherian. We show that G has a finite k-subgroup S such that the natural map H^1(R, S) --> H^1(R, G) is surjective for e
Externí odkaz:
http://arxiv.org/abs/0710.2064
Publikováno v:
Journal of Algebra 296 (2006), 561-581
Let G be a linear algebraic group defined over a field k. We prove that, under mild assumptions on k and G, there exists a finite k-subgroup S of G such that the natural map H^1(K, S) -> H^1(K, G) is surjective for every field extension K/k. We give
Externí odkaz:
http://arxiv.org/abs/math/0404392
Publikováno v:
In Advances in Mathematics 26 February 2016 290:260-292
Publikováno v:
In Journal of Algebra 1 February 2014 399:55-78
Publikováno v:
American Journal of Mathematics, 2012 Dec 01. 134(6), 1541-1583.
Externí odkaz:
http://dx.doi.org/10.1353/ajm.2012.0051
Publikováno v:
In Journal of Algebra 2006 296(2):561-581
Publikováno v:
Mathematics Research Letters
Mathematics Research Letters, 2016, 23, pp.81-104
Mathematics Research Letters, 2016, 23, pp.81-104
We define and classify the analogues of the affine Kac-Moody Lie algebras for the ring corresponding to the complex projective line minus three points. The classification is given in terms of Grothendieck's dessins d'enfants. We also study the questi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c10f9fdcc7fc1c503195c9b1fde14c4a
https://hal.archives-ouvertes.fr/hal-00910221v2/file/dessins03IX14.pdf
https://hal.archives-ouvertes.fr/hal-00910221v2/file/dessins03IX14.pdf