Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Chermelle Engel"'
Publikováno v:
Remote Sensing, Vol 10, Iss 9, p 1368 (2018)
An integral part of any remotely sensed fire detection and attribution method is an estimation of the target pixel’s background temperature. This temperature cannot be measured directly independent of fire radiation, so indirect methods must be use
Externí odkaz:
https://doaj.org/article/be991c57b5fc4893aea17a81820693eb
Autor:
Konstantinos Chatzopoulos-Vouzoglanis, Karin J. Reinke, Mariela Soto-Berelov, Chermelle Engel, Simon D. Jones
Publikováno v:
International Journal of Wildland Fire. 31:572-585
Background We compared estimates of Fire Radiative Power (FRP) from sensors onboard geostationary Himawari-8 (BRIGHT_AHI) and polar-orbiting TERRA/AQUA (MOD14/MYD14) satellites during the 2019/2020 Black Summer Fires in South-Eastern Australia. Aim/m
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 59:4947-4956
This article introduces a new algorithm to detect active fires in geostationary remotely sensed data. The algorithm calculated dynamic statistical multispectral thresholds based on, and sensitive to, biogeographical region, subseason, and time-of-day
Autor:
Scott Wales, Michael J. Reeder, Todd P. Lane, Laura Davies, Jussi Toivanen, Chermelle Engel, Stuart Webster
Publikováno v:
Journal of Advances in Modeling Earth Systems, Vol 11, Iss 1, Pp 210-230 (2019)
A model for the spread of a wildfire is developed within the U.K. Met Office Unified Model (UM) and used to simulate the Kilmore East fire complex (in southeastern Australia) on Black Saturday (7 February 2009). The UM is configured with four nests w
Publikováno v:
Remote sensing, 10(9):1368. MDPI
Remote Sensing, Vol 10, Iss 9, p 1368 (2018)
Remote Sensing
Volume 10
Issue 9
Pages: 1368
Remote Sensing, Vol 10, Iss 9, p 1368 (2018)
Remote Sensing
Volume 10
Issue 9
Pages: 1368
An integral part of any remotely sensed fire detection and attribution method is an estimation of the target pixel’s background temperature. This temperature cannot be measured directly independent of fire radiation, so indirect methods must be use
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a7db92f15da6e189fafb11fb6a4e7f8
https://research.utwente.nl/en/publications/8c636931-a3c1-434c-992c-82892484551f
https://research.utwente.nl/en/publications/8c636931-a3c1-434c-992c-82892484551f
Autor:
Luke Wallace, Chathura H. Wickramasinghe, Simon Jones, Bryan Hally, Chermelle Engel, Karin Reinke
Publikováno v:
IGARSS
The utility of Geostationary active fire detection and surveillance has recently been supplemented by two new algorithms developed by our group: the AHI-FSA (Advanced Himawari Imager - Fire Surveillance Algorithm) and the Broad Area Training (BAT) me
Autor:
Martin Dix, Yi Xiao, Chris Tingwell, A Sulaiman, H Sims, I. Bermous, X. Sun, L Logan, Lawrie Rikus, L Deschamps, Peter Steinle, R Bowen, Matthew T. Naughton, Gary S. Dietachmayer, J. Lee, H Zhu, Chermelle Engel, Tomasz J. Glowacki, Gregory L. Roff, Charmaine Franklin, B. Harris, J. R. Fraser, Tan Le, Mohar Chattopadhyay, K. Puri, Sun, V. Barras
Publikováno v:
Australian Meteorological and Oceanographic Journal. 63:265-284
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 139:585-599
The meteorological conditions are investigated over the state of Victoria, Australia on 7 February 2009, the day of the ‘Black Saturday’ fires. Daytime temperatures exceeding 45°C, strong surface winds and extremely dry conditions combined to pr
Autor:
Elizabeth E. Ebert, Chermelle Engel
Publikováno v:
Weather and Forecasting. 22:1345-1359
This paper presents an extension of the operational consensus forecast (OCF) method, which performs a statistical correction of model output at sites followed by weighted average consensus on a daily basis. Numerical weather prediction (NWP) model fo
Autor:
Frank Woodcock, Chermelle Engel
Publikováno v:
Weather and Forecasting. 20:101-111
The objective consensus forecasting (OCF) system is an automated operational forecasting system that adapts to underlying numerical model upgrades within 30 days and generally outperforms direct model output (DMO) and model output statistics (MOS) fo