Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Chenyun Luo"'
Publikováno v:
New Journal of Chemistry. 47:8489-8493
p-Cymene synthesis by electrocatalytic oxidation from natural α-terpinene and γ-terpinene showed excellent selectivity and yield when changing the reaction interface microenvironment through cation concentration and alkalinity.
Publikováno v:
Nonlinearity. 35:6349-6398
We show that the solution of the free-boundary incompressible ideal magnetohydrodynamic (MHD) equations with surface tension converges to that of the free-boundary incompressible ideal MHD equations without surface tension given the Rayleigh-Taylor s
Autor:
CHENYUN LUO, KAI ZHOU
Publikováno v:
SIAM Journal on Mathematical Analysis; 2024, Vol. 56 Issue 1, p374-411, 38p
Publikováno v:
Industrial Crops and Products. 187:115505
Autor:
Chenyun Luo, Junyan Zhang
In this paper we prove the local well-posedness (LWP) for the 3D compressible Euler equations describing the motion of a liquid in an unbounded initial domain with moving boundary. The liquid is under the influence of gravity but without surface tens
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98c2d0e81add1bf241eb91e269d9d456
http://arxiv.org/abs/2109.02822
http://arxiv.org/abs/2109.02822
Autor:
Junyan Zhang, Chenyun Luo
We consider the three-dimensional incompressible free-boundary magnetohydrodynamics (MHD) equations in a bounded domain with surface tension on the boundary. We establish a priori estimate for solutions in the Lagrangian coordinates with $H^{3.5}$ re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d07e66c0f2ed480b13224ed5e7428a33
http://arxiv.org/abs/1907.11827
http://arxiv.org/abs/1907.11827
We establish the local well-posedness for the free boundary problem for the compressible Euler equations describing the motion of liquid under the influence of Newtonian self-gravity. We do this by solving a tangentially-smoothed version of Euler's e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::61a169f5fa9859537831951a2a401e1e
http://arxiv.org/abs/1902.08600
http://arxiv.org/abs/1902.08600
Autor:
Marcelo M. Disconzi, Chenyun Luo
In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently, the presence of surface tension introd
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b5eb9f34ec6c9f28202015d11ad196c
A Regularity Result for the Incompressible Magnetohydrodynamics Equations with Free Surface Boundary
Autor:
Chenyun Luo, Junyan Zhang
We consider the three-dimensional incompressible magnetohydrodynamics (MHD) equations in a bounded domain with small volume and free moving surface boundary. We establish a priori estimate for solutions with minimal regularity assumptions on the init
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e13d6211976132eb4e4a4ea6345bfb0f
Autor:
Chenyun Luo
Publikováno v:
Annals of PDE. 4
We prove a priori estimates for the compressible Euler equations modeling the motion of a liquid with moving physical vacuum boundary in an unbounded initial domain. The liquid is under influence of gravity but without surface tension. Our fluid is n