Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Chenwei Ni"'
Autor:
Ruotian Chen, Zefeng Ren, Yu Liang, Guanhua Zhang, Thomas Dittrich, Runze Liu, Yang Liu, Yue Zhao, Shan Pang, Hongyu An, Chenwei Ni, Panwang Zhou, Keli Han, Fengtao Fan, Can Li
Publikováno v:
Nature. 610:296-301
The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production
Autor:
Nengcong Yang, Ruotian Chen, Chenwei Ni, Dongfeng Li, Qi Sun, Lifang Liu, Yu Qi, Shengye Jin, Xiuli Wang, Fengtao Fan, Can Li, Fuxiang Zhang
Publikováno v:
Journal of Energy Chemistry. 72:326-332
Autor:
Wenchao Jiang, Chenwei Ni, Lingcong Zhang, Ming Shi, Jiangshan Qu, Hongpeng Zhou, Chengbo Zhang, Ruotian Chen, Xiuli Wang, Can Li, Rengui Li
Publikováno v:
Angewandte Chemie International Edition. 61
A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO
Autor:
Zhijie Jia, Xinlong Zhang, Hongye Yang, Yuan Lu, Jiale Liu, Xun Yu, Dayun Feng, Kexin Gao, Jianfu Xue, Bo Ming, Chenwei Nie, Shaokun Li
Publikováno v:
Drones, Vol 8, Iss 5, p 175 (2024)
Effective agricultural management in maize production operations starts with the early quantification of seedlings. Accurately determining plant presence allows growers to optimize planting density, allocate resources, and detect potential growth iss
Externí odkaz:
https://doaj.org/article/68eaf12c007d492bba5ce890e23b16b3
Autor:
Fei Nan, Yang Song, Xun Yu, Chenwei Nie, Yadong Liu, Yali Bai, Dongxiao Zou, Chao Wang, Dameng Yin, Wude Yang, Xiuliang Jin
Publikováno v:
Frontiers in Plant Science, Vol 14 (2023)
Maize (Zea mays L.) is one of the most important crops, influencing food production and even the whole industry. In recent years, global crop production has been facing great challenges from diseases. However, most of the traditional methods make it
Externí odkaz:
https://doaj.org/article/bef0f097de5549b8b76c0d28448869e3
Autor:
Minghan Cheng, Chengming Sun, Chenwei Nie, Shuaibing Liu, Xun Yu, Yi Bai, Yadong Liu, Lin Meng, Xiao Jia, Yuan Liu, Lili Zhou, Fei Nan, Tengyu Cui, Xiuliang Jin
Publikováno v:
Agricultural Water Management, Vol 287, Iss , Pp 108442- (2023)
Accurately monitoring the crop water conditions (CWC) is vital for agricultural water management. Traditional in situ measurements are limited by inefficiency and lack of spatial information. However, the development of unmanned aerial vehicle (UAV)
Externí odkaz:
https://doaj.org/article/ffbd76c5d60a460dbc0a2a9d6c1573b3
Autor:
Minghan Cheng, Xiyun Jiao, Lei Shi, Josep Penuelas, Lalit Kumar, Chenwei Nie, Tianao Wu, Kaihua Liu, Wenbin Wu, Xiuliang Jin
Publikováno v:
Scientific Data, Vol 9, Iss 1, Pp 1-13 (2022)
Measurement(s) crop yield and crop water productivity Technology Type(s) remote sensing and machine learning
Externí odkaz:
https://doaj.org/article/1fcd5ac715b54d13923c704aa5602322
Autor:
Shuaibing Liu, Xiuliang Jin, Yi Bai, Wenbin Wu, Ningbo Cui, Minghan Cheng, Yadong Liu, Lin Meng, Xiao Jia, Chenwei Nie, Dameng Yin
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 121, Iss , Pp 103383- (2023)
The high proportion of soil background pixels in UAV remote sensing images is an important reason for the uncertainty of high-precision leaf area index (LAI) estimation at early growth stages of crops. Although the traditional method of removing soil
Externí odkaz:
https://doaj.org/article/216e1d97a3714703b8dae7afe938ecf2
Autor:
Xiao Jia, Dameng Yin, Yali Bai, Xun Yu, Yang Song, Minghan Cheng, Shuaibing Liu, Yi Bai, Lin Meng, Yadong Liu, Qian Liu, Fei Nan, Chenwei Nie, Lei Shi, Ping Dong, Wei Guo, Xiuliang Jin
Publikováno v:
Drones, Vol 7, Iss 11, p 650 (2023)
Maize leaf spot is a common disease that hampers the photosynthesis of maize by destroying the pigment structure of maize leaves, thus reducing the yield. Traditional disease monitoring is time-consuming and laborious. Therefore, a fast and effective
Externí odkaz:
https://doaj.org/article/f9718be6a3fb40049d2194f067a6239e
Autor:
Yuan Liu, Chenwei Nie, Zhen Zhang, ZiXu Wang, Bo Ming, Jun Xue, Hongye Yang, Honggen Xu, Lin Meng, Ningbo Cui, Wenbin Wu, Xiuliang Jin
Publikováno v:
Frontiers in Plant Science, Vol 13 (2023)
Timely and accurate pre-harvest estimates of maize yield are vital for agricultural management. Although many remote sensing approaches have been developed to estimate maize yields, few have been tested under lodging conditions. Thus, the feasibility
Externí odkaz:
https://doaj.org/article/f26a526e48634873933510ef47a675ad