Zobrazeno 1 - 10
of 113
pro vyhledávání: '"Cheng, Monica"'
Autor:
Zeng, Shenglai, Zhang, Jiankun, Li, Bingheng, Lin, Yuping, Zheng, Tianqi, Everaert, Dante, Lu, Hanqing, Liu, Hui, Xing, Yue, Cheng, Monica Xiao, Tang, Jiliang
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs). However, these systems face challenges in effectively integrating external knowledge with the LLM's internal knowledge, ofte
Externí odkaz:
http://arxiv.org/abs/2411.14572
Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-
Externí odkaz:
http://arxiv.org/abs/2406.10777
Autor:
Wang, Haoyu, Li, Ruirui, Jiang, Haoming, Tian, Jinjin, Wang, Zhengyang, Luo, Chen, Tang, Xianfeng, Cheng, Monica, Zhao, Tuo, Gao, Jing
Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often face challenges with complex inputs and encounter difficulties due to noisy knowle
Externí odkaz:
http://arxiv.org/abs/2402.11129
Autor:
Xu, Yinglun, Suresh, Tarun, Gumaste, Rohan, Zhu, David, Li, Ruirui, Wang, Zhengyang, Jiang, Haoming, Tang, Xianfeng, Yin, Qingyu, Cheng, Monica Xiao, Zeng, Qi, Zhang, Chao, Singh, Gagandeep
Preference-based reinforcement learning (PBRL) in the offline setting has succeeded greatly in industrial applications such as chatbots. A two-step learning framework where one applies a reinforcement learning step after a reward modeling step has be
Externí odkaz:
http://arxiv.org/abs/2401.00330
Autor:
Jin, Wei, Mao, Haitao, Li, Zheng, Jiang, Haoming, Luo, Chen, Wen, Hongzhi, Han, Haoyu, Lu, Hanqing, Wang, Zhengyang, Li, Ruirui, Li, Zhen, Cheng, Monica Xiao, Goutam, Rahul, Zhang, Haiyang, Subbian, Karthik, Wang, Suhang, Sun, Yizhou, Tang, Jiliang, Yin, Bing, Tang, Xianfeng
Modeling customer shopping intentions is a crucial task for e-commerce, as it directly impacts user experience and engagement. Thus, accurately understanding customer preferences is essential for providing personalized recommendations. Session-based
Externí odkaz:
http://arxiv.org/abs/2307.09688
Autor:
Dai, Enyan, Cui, Limeng, Wang, Zhengyang, Tang, Xianfeng, Wang, Yinghan, Cheng, Monica, Yin, Bing, Wang, Suhang
Graph Neural Networks (GNNs) have achieved great success in modeling graph-structured data. However, recent works show that GNNs are vulnerable to adversarial attacks which can fool the GNN model to make desired predictions of the attacker. In additi
Externí odkaz:
http://arxiv.org/abs/2306.08604
Autor:
Kong, Feng-Ming (Spring), Li, Ling, Wang, Weili, Campbell, Jeff, Waller, Jennifer L., Piert, Morand, Gross, Milton, Cheng, Monica, Owen, Dawn, Stenmark, Matthew, Huang, Ke Colin, Frey, Kirk A., Ten Haken, Randall K., Lawrence, Theodore S.
Publikováno v:
In Radiotherapy and Oncology March 2019 132:241-249
Autor:
Conti, Alessandro, D’Elia, Carolina, Cheng, Monica, Santoni, Matteo, Piva, Francesco, Brunelli, Matteo, Lopez-Beltran, Antonio, Giulietti, Matteo, Scarpelli, Marina, Pycha, Armin, Galosi, Andrea Benedetto, Artibani, Walter, Cheng, Liang, Montironi, Rodolfo, Battelli, Nicola, Lusuardi, Lukas
Publikováno v:
In European Urology Supplements December 2017 16(12):309-315
Autor:
Gore, Jesse *, Imasuen-Williams, Imade E., Conteh, Abass M., Craven, Kelly E., Cheng, Monica, Korc, Murray
Publikováno v:
In Cancer Letters 28 August 2016 379(1):143-153
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.