Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Chendi Dai"'
Autor:
Alexandra M. Goryaeva, Clovis Lapointe, Chendi Dai, Julien Dérès, Jean-Bernard Maillet, Mihai-Cosmin Marinica
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
The presence of defects in crystalline solids affects material properties, the precise knowledge of defect characteristics being highly desirable. Here the authors demonstrate a machine-learning outlier detection method based on distortion score as a
Externí odkaz:
https://doaj.org/article/9c4d246c54c44202a50b99c9a8ea072c
Publikováno v:
Proceedings of the 2022 11th International Conference on Networks, Communication and Computing.
Autor:
Chendi Dai, Mihai-Cosmin Marinica, Alexandra Goryaeva, Clovis Lapointe, Jean-Bernard Maillet, Julien Dérès
Publikováno v:
Nature Communications
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Nature Communications, 2020, 11 (1), pp.4691. ⟨10.1038/s41467-020-18282-2⟩
Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Nature Communications, 2020, 11 (1), pp.4691. ⟨10.1038/s41467-020-18282-2⟩
This work revises the concept of defects in crystalline solids and proposes a universal strategy for their characterization at the atomic scale using outlier detection based on statistical distances. The proposed strategy provides a generic measure t