Zobrazeno 1 - 10
of 299
pro vyhledávání: '"Chen Xueyu"'
Autor:
Su Mingyang, Chen Xueyu, Tang Linwei, Yang Bo, Zou Haijian, Liu Junmin, Li Ying, Chen Shuqing, Fan Dianyuan
Publikováno v:
Nanophotonics, Vol 9, Iss 14, Pp 4265-4272 (2020)
Due to lower out-of-plane electrical conductance, black phosphorus (BP) provides a suitable host material for improving the sensitivity of biosensors. However, BP oxidizes easily, which limits practical applications. In this article, we propose a sen
Externí odkaz:
https://doaj.org/article/c2c02ba930a0430cbaa89a138cb40d38
Patent documents in the patent database (PatDB) are crucial for research, development, and innovation as they contain valuable technical information. However, PatDB presents a multifaceted challenge compared to publicly available preprocessed databas
Externí odkaz:
http://arxiv.org/abs/2402.02158
Non alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, which can be predicted accurately to prevent advanced fibrosis and cirrhosis. While, a liver biopsy, the gold standard for NAFLD diagnosis, is invasive, expe
Externí odkaz:
http://arxiv.org/abs/2307.09823
Autor:
Chen, Xueyu, Han, Dongshan, Zeng, Yali, Li, Huitao, Wang, Xuan, Huang, Zilu, Yang, Lingling, Wagenaar, Gerry T.M., Lin, Bingchun, Yang, Chuanzhong
Publikováno v:
In European Journal of Pharmacology 15 December 2024 985
Autor:
Chen, Weina, Ma, Chenglong, Wang, Manli, Huang, Xinying, Chen, Xueyu, Xu, Zhongyan, Huang, Wenxin, Wang, Rong, Zheng, Zhaodian, Fang, Jing, Shen, Yanqiu, Zhao, Depeng, Zhang, Huidong
Publikováno v:
In Environment International September 2024 191
Autor:
Li, Wangbin, Sun, Kaimin, Li, Wenzhuo, Huang, Xiao, Wei, Jinjiang, Chen, Yepei, Cui, Wei, Chen, Xueyu, Lv, Xianwei
Publikováno v:
In ISPRS Journal of Photogrammetry and Remote Sensing February 2024 208:158-175
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We propose an end-to-end model to predict drug-drug interactions (DDIs) by employing graph-augmented convolutional networks. And this is implemented by combining graph CNN with an attentive pooling network to extract structural relations between drug
Externí odkaz:
http://arxiv.org/abs/1912.03702
Autor:
Wang, Yue1 (AUTHOR), Chen, Xueyu2 (AUTHOR), Shi, Jie2 (AUTHOR), Du, Mingyi3 (AUTHOR), Li, Shengnan4 (AUTHOR), Pang, Jinhong2 (AUTHOR), Qiao, Junpeng2 (AUTHOR), Zhao, Yingying2 (AUTHOR), Chen, Qiaoqiao2 (AUTHOR), Guo, Yuanyuan1 (AUTHOR), Xi, Yan1 (AUTHOR) sdu_xiyan@163.com, Chi, Weiwei5 (AUTHOR) Chi202259050001@sdu.edu.cn
Publikováno v:
Cardiovascular Diabetology. 1/3/2024, Vol. 23 Issue 1, p1-11. 11p.
Publikováno v:
In Global Energy Interconnection April 2023 6(2):238-252