Zobrazeno 1 - 10
of 122
pro vyhledávání: '"Chen Jiaolong"'
Publikováno v:
中国工程科学, Vol 26, Iss 1, Pp 190-201 (2024)
Environmental judicial adjudication is an essential component of the eco-environment governance system. The artificial intelligence large language model (AI-LLM), developed based on generative artificial intelligence, has offered significant opportun
Externí odkaz:
https://doaj.org/article/1a37f76454c54aee83f1b5998ab7f50c
Autor:
Li, Qianyun, Chen, Jiaolong
The main purpose of this paper is to establish a Schwarz lemma for the solutions to the Dirichlet problems for the invariant Laplacians. The obtained result of this paper is a generalization of the corresponding known results [11, Theorem 1.1] and [1
Externí odkaz:
http://arxiv.org/abs/2312.08580
The main purpose of this paper is to establish some isoperimetric type inequalities for mappings induced by the weighted Laplace differential operators. The obtained results of this paper provide improvements and extensions of the corresponding known
Externí odkaz:
http://arxiv.org/abs/2302.08311
Autor:
Chen, Jiaolong, Kalaj, David
Let $\mathbb{A}$ and $\mathbb{A_{*}}$ be two non-degenerate spherical annuli in $\mathbb{R}^{n}$ equipped with the Euclidean metric and the weighted metric $|y|^{1-n}$, respectively. Let $\mathcal{F}(\mathbb{A},\mathbb{A_{*}})$ denote the class of ho
Externí odkaz:
http://arxiv.org/abs/2009.13617
Publikováno v:
Potential Analysis (2022)
\begin{abstract} In this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that $u=\mathcal{P}_{\Omega}[\phi]$ and $\phi\in L^{p}(\partial\Omega, \mathbb{R})$, where $p\i
Externí odkaz:
http://arxiv.org/abs/2009.09548
Autor:
Chen, Jiaolong, Kalaj, David
Assume that $p\in(1,\infty]$ and $u=P_{h}[\phi]$, where $\phi\in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^{n})$. Then for any $x\in \mathbb{B}^{n}$, we obtain the sharp inequalities $$ |u(x)|\leq \frac{\mathbf{C}_{q}^{\frac{1}{q}}(x)}{(1-|x|^2)^{\frac{n-1 }
Externí odkaz:
http://arxiv.org/abs/2005.14046
We study the behavior of the boundary function of a harmonic mapping from global and local points of view. Results related to the Koebe lemma are proved, as well as a generalization of a boundary behavior theorem by Bshouty, Lyzzaik and Weitsman. We
Externí odkaz:
http://arxiv.org/abs/2005.02101
Autor:
Chen, Jiaolong, Kalaj, David
Assume that $p\in[1,\infty]$ and $u=P_{h}[\phi]$, where $\phi\in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $|u(x)|\le G_p(|x|)\|\phi\|_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover,
Externí odkaz:
http://arxiv.org/abs/2004.06211
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Tribology International February 2023 178 Part A