Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Chen, Guodu"'
Publikováno v:
Peking Math. J. 7 (2024), no. 1, 1-33
In this paper, we study the theory of complements, introduced by Shokurov, for Calabi-Yau type varieties with the coefficient set $[0,1]$. We show that there exists a finite set of positive integers $\mathcal{N}$, such that if a threefold pair $(X/Z\
Externí odkaz:
http://arxiv.org/abs/2409.01310
Given positive integers $d\geq\kappa$, and a subset $\Gamma\subset [0,1]$, let $\mathrm{Ivol}_{\mathrm{lc}}^{\Gamma}(d,\kappa)$ denote the set of Iitaka volumes of $d$-dimensional projective log canonical pairs $(X, B)$ such that the Iitaka--Kodaira
Externí odkaz:
http://arxiv.org/abs/2407.07391
By systematically introducing and studying the structure of algebraically integrable generalized foliated quadruples, we establish the minimal model program for $\mathbb Q$-factorial foliated dlt algebraically integrable foliations and lc generalized
Externí odkaz:
http://arxiv.org/abs/2309.15823
We study the relationship between Iitaka fibrations and the conjecture on the existence of complements, assuming the good minimal model conjecture. In one direction, we show that the conjecture on the existence of complements implies the effective lo
Externí odkaz:
http://arxiv.org/abs/2301.04813
Autor:
Chen, Guodu, Zhou, Chuyu
In this note, we reduce various conjectures in birational geometry, including Shokurov conjecture on singularities of the base of log Calabi-Yau fibrations of Fano type and boundedness conjecture for rationally connected Calabi-Yau varieties, to a co
Externí odkaz:
http://arxiv.org/abs/2208.10372
In this paper, we continue to develop the theories on functional pairs and uniform rational polytopes. We show that there is a uniform perturbation for Iitaka dimensions of pseudo-effective lc pairs of fixed dimension with DCC coefficients assuming t
Externí odkaz:
http://arxiv.org/abs/2208.04663
Autor:
Chen, Guodu, Zhou, Chuyu
Let $(X, \Delta)$ be a projective log canonical Calabi-Yau pair and $L$ an ample $\mathbb{Q}$-line bundle on $X$, we show that there is a correspondence between lc places of $(X, \Delta)$ and weakly special test configurations of $(X, \Delta;L)$.
Externí odkaz:
http://arxiv.org/abs/2201.03223
Autor:
Chen, Guodu, Zhou, Chuyu
Publikováno v:
Alg. Number Th. 16 (2022) 2415-2432
Let $X$ be a strictly log canonical Fano variety, we show that every lc place of complements is dreamy, and there exists a correspondence between weakly special test configurations of $(X,-K_X)$ and lc places of complements.
Comment: 18 pages. F
Comment: 18 pages. F
Externí odkaz:
http://arxiv.org/abs/2107.08004
Autor:
Chen, Guodu, Tsakanikas, Nikolaos
Publikováno v:
Acta Math. Sin. (Engl. Ser.) 39 (2023), 967-994
We prove the termination of flips for 4-dimensional pseudo-effective NQC log canonical generalized pairs. As main ingredients, we verify the termination of flips for 3-dimensional NQC log canonical generalized pairs, and show that the termination of
Externí odkaz:
http://arxiv.org/abs/2011.02236
Autor:
Chen, Guodu, Xue, Qingyuan
We show the existence of $(\epsilon,n)$-complements for $(\epsilon,\Rr)$-complementary projective generalized pairs of Fano type $(X,B+M)$ when either the coefficients of $B$ and $\mu_j$ belong to a finite set or the coefficients of $B$ belong to a D
Externí odkaz:
http://arxiv.org/abs/2008.07121