Zobrazeno 1 - 10
of 1 509
pro vyhledávání: '"Chellali, A."'
Autor:
Chellali, M., Valenzuela-Tripodoro, J. C., Golmohammadi, H., Takhonov, I. I., Matrokhin, N. A.
A set $S\subseteq V$ in an isolate-free graph $G$ is a total restrained dominating set, abbreviated TRD-set, if every vertex in $V$ is adjacent to a vertex in $S$, and every vertex in $V\setminus S$ is adjacent to a vertex in $V\setminus S$. A total
Externí odkaz:
http://arxiv.org/abs/2412.18623
Publikováno v:
Discussiones Mathematicae Graph Theory 42 (2022) 937-958
A Roman $\{2\}$-dominating function (R2F) is a function $f:V\rightarrow \{0,1,2\}$ with the property that for every vertex $v\in V$ with $f(v)=0$ there is a neighbor $u$ of $v$ with $f(u)=2$, or there are two neighbors $x,y$ of $v$ with $f(x)=f(y)=1$
Externí odkaz:
http://arxiv.org/abs/2402.07968
Publikováno v:
Mediterranean Journal of Mathematics (2023) 20:171
Let $\{0,1,\dots, t\}$ be abbreviated by $[t].$ A double Roman dominating function (DRDF) on a graph $\Gamma=(V,E)$ is a map $l:V\rightarrow [3]$ satisfying \textrm{(i)} if $l(r)=0$ then there must be at least two neighbors labeled 2 under $l$ or a n
Externí odkaz:
http://arxiv.org/abs/2402.07020
Publikováno v:
Applied Mathematics and Computation 414 (2022) 126662
A maximal double Roman dominating function (MDRDF) on a graph $G=(V,E)$ is a function $f:V(G)\rightarrow \{0,1,2,3\}$ such that \textrm{(i) }every vertex $v$ with $f(v)=0$ is adjacent to least two vertices { assigned $2$ or to at least one vertex ass
Externí odkaz:
http://arxiv.org/abs/2402.07013
Autor:
Ahangar, Hossein Abdollahzadeh, Alvarez, M. Pilar, Chellali, Mustapha, Sheikholeslami, Seyed Mahmoud, Valenzuela-Tripodoro, Juan Carlos
Publikováno v:
applied math and computation, 391 (2021)
The Roman domination in graphs is well-studied in graph theory. The topic is related to a defensive strategy problem in which the Roman legions are settled in some secure cities of the Roman Empire. The deployment of the legions around the Empire is
Externí odkaz:
http://arxiv.org/abs/2402.07009
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Pp 1-12 (2024)
An outer-independent triple Roman dominating function (OI[3]RDF) on a graph [Formula: see text] is function [Formula: see text] having the property that (i) if [Formula: see text] then v must have either a neighbor assigned 4 or two neighbors one of
Externí odkaz:
https://doaj.org/article/dd8dfc2031a14f5a8db6e3381cdafa32
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 2, Pp 171-180 (2024)
A quasi total double Roman dominating function (QTDRD-function) on a graph [Formula: see text] is a function [Formula: see text] having the property that (i) if f(v) = 0, then vertex v must have at least two neighbors assigned 2 under f or one neighb
Externí odkaz:
https://doaj.org/article/f610d32aab714c718a924f3a453e94c9
Autor:
Boutrig, Razika1 r.bourtig@yahoo.fr, Chellali, Mustapha2 m_chellali@yahoo.com, Meddah, Nacéra2 meddahn11@yahoo.fr
Publikováno v:
Communications in Combinatorics & Optimization. Mar2025, Vol. 10 Issue 1, p69-78. 10p.
Autor:
Senthilkumar, B.1 senthilsubramanyan@gmail.com, Chellali, M.2 m_chellali@yahoo.com, Kumar, H. Naresh1 nareshhari1403@gmail.com, Yanamandram, V. B.1 venkatakrish2@maths.sastra.edu
Publikováno v:
Communications in Combinatorics & Optimization. Mar2025, Vol. 10 Issue 1, p99-109. 11p.
Autor:
Blidia, Mostafa1 m_blidia@yahoo.fr, Chellali, Mustapha1 m_chellali@yahoo.com
Publikováno v:
Communications in Combinatorics & Optimization. 2024, Vol. 9 Issue 4, p799-803. 5p.