Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Cheliotis, Dimitrios"'
We provide some new estimates for Bellman type functions for the dyadic maximal opeator on $R^n$ and of maximal operators on martingales related to weighted spaces. Using a type of symmetrization principle, introduced for the dyadic maximal operator
Externí odkaz:
http://arxiv.org/abs/1511.07146
Autor:
Cheliotis, Dimitrios, Virag, Balint
Publikováno v:
Probab. Theory Related Fields 148 (2010), no. 1-2, 141-158
We consider random walk on a mildly random environment on finite transitive d- regular graphs of increasing girth. After scaling and centering, the analytic spectrum of the transition matrix converges in distribution to a Gaussian noise. An interesti
Externí odkaz:
http://arxiv.org/abs/0804.4814
Autor:
Cheliotis, Dimitrios
For a diffusion X_t in a one-dimensional Wiener medium W, it is known that there is a certain process b_x(W) that depends only on the environment W, so that X_t-b_{logt}(W) converges in distribution as t goes to infinity. We prove that, modulo a rela
Externí odkaz:
http://arxiv.org/abs/math/0612533
Autor:
Cheliotis, Dimitrios
Publikováno v:
Statistics and Probability Letters 76 (2006) 1025-1031
For any recurrent random walk (S_n)_{n>0} on R, there are increasing sequences (g_n)_{n>0} converging to infinity for which (g_n S_n)_{n>0} has at least one finite accumulation point. For one class of random walks, we give a criterion on (g_n)_{n>0}
Externí odkaz:
http://arxiv.org/abs/math/0610056
Autor:
Cheliotis, Dimitrios
According to a theorem of S. Schumacher, for a diffusion X in an environment determined by a stable process that belongs to an appropriate class and has index a, it holds that X_t/(log t)^a converges in distribution, as t goes to infinity, to a rando
Externí odkaz:
http://arxiv.org/abs/math/0610057
Autor:
Cheliotis, Dimitrios
According to a theorem of S. Schumacher and T. Brox, for a diffusion $X$ in a Brownian environment it holds that $(X_t-b_{\log t})/\log^2t\to 0 $ in probability, as $t\to\infty$, where $b_{\cdot}$ is a stochastic process having an explicit descriptio
Externí odkaz:
http://arxiv.org/abs/math/0310306
Autor:
Cheliotis, Dimitrios
Publikováno v:
The Annals of Probability, 2005 Sep 01. 33(5), 1760-1781.
Externí odkaz:
https://www.jstor.org/stable/3481701
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.