Zobrazeno 1 - 10
of 178
pro vyhledávání: '"Chee-Keng Yap"'
Autor:
Cohen, Arjeh M.
Publikováno v:
Mathematics of Computation, 2002 Jul 01. 71(239), 1333-1333.
Externí odkaz:
https://www.jstor.org/stable/2698916
Autor:
Wilfong, Gordon T.
Publikováno v:
American Scientist, 1989 May 01. 77(3), 299-299.
Externí odkaz:
https://www.jstor.org/stable/27855805
Publikováno v:
Journal of Symbolic Computation. 86:51-96
We describe a subdivision algorithm for isolating the complex roots of a polynomial F ∈ C [ x ] . Given an oracle that provides approximations of each of the coefficients of F to any absolute error bound and given an arbitrary square B in the compl
Publikováno v:
Computers & Mathematics with Applications. (2-3):414
Publikováno v:
In Computers and Mathematics with Applications 2000 40(2):414-414
Autor:
Jacob T. Schwartz, Chee-Keng Yap
First published in 1987, the seven chapters that comprise this book review contemporary work on the geometric side of robotics. The first chapter defines the fundamental goal of robotics in very broad terms and outlines a research agenda each of whos
Autor:
Chee-Keng Yap
Publikováno v:
Algorithmic and Geometric Aspects of Robotics (Routledge Revivals) ISBN: 9781315471457
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5112630ffd353ee60d342e595e65e972
https://doi.org/10.4324/9781315471457-9
https://doi.org/10.4324/9781315471457-9
Publikováno v:
Springer Tracts in Advanced Robotics ISBN: 9783319165943
WAFR
WAFR
Motion planning is a major topic in robotics . Divergent paths have been taken by practical roboticists and theoretical motion planners. Our goal is to produce algorithms that are practical and have strong theoretical guarantees. Recently, we have pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::238d56b6ff3d2ed66cca39dc634e6721
https://doi.org/10.1007/978-3-319-16595-0_21
https://doi.org/10.1007/978-3-319-16595-0_21
Autor:
Chee-Keng Yap
Publikováno v:
Frontiers in Algorithmics ISBN: 9783319196466
FAW
FAW
We propose to design motion planning algorithms with a strong form of resolution completeness, called resolution-exactness. Such planners can be implemented using soft predicates within the subdivision paradigm. The advantage of softness is that we a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fef2fdcbe1e64a97dd6aa2c9f1b253e4
https://doi.org/10.1007/978-3-319-19647-3_2
https://doi.org/10.1007/978-3-319-19647-3_2