Zobrazeno 1 - 10
of 176
pro vyhledávání: '"Chebyshev functional"'
Publikováno v:
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-19 (2024)
Abstract Strongly convex functions as a subclass of convex functions, still equipped with stronger properties, are employed through several generalizations and improvements of the Jensen inequality and the Jensen–Mercer inequality. This paper addit
Externí odkaz:
https://doaj.org/article/2bd0e3b790804ec0bb0ca185b5723334
Autor:
Bakula Milica Klaričić, Pečarić Josip
Publikováno v:
Annales Mathematicae Silesianae, Vol 38, Iss 1, Pp 37-56 (2024)
New upper bounds for the weighted Chebyshev functional under various conditions, including those of Steffensen type, are given. The obtained results are used to establish some new bounds for the Jensen functional.
Externí odkaz:
https://doaj.org/article/443f949364af42cf9e742d81fb9bdb8a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Inequalities and Applications, Vol 2021, Iss 1, Pp 1-14 (2021)
Abstract The main goal of this paper is estimating certain new fractional integral inequalities for the extended Chebyshev functional in the sense of synchronous functions by employing proportional fractional integral (PFI) and Hadamard proportional
Externí odkaz:
https://doaj.org/article/28d0d200616141199e9a5bdf9b639b2f
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-18 (2020)
Abstract The primary objective of this present paper is to establish certain new weighted fractional Pólya–Szegö and Chebyshev type integral inequalities by employing the generalized weighted fractional integral involving another function Ψ in t
Externí odkaz:
https://doaj.org/article/cad661c9fc8247678f7eef061efa4664
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-19 (2020)
Abstract In this paper, we establish the generalized Riemann–Liouville (RL) fractional integrals in the sense of another increasing, positive, monotone, and measurable function Ψ. We determine certain new double-weighted type fractional integral i
Externí odkaz:
https://doaj.org/article/b9ae27d201b043c8b595e62c9650b24b
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-9 (2020)
Abstract The main aim of this present paper is to establish fractional conformable inequalities for the weighted and extended Chebyshev functionals. We present some special cases of our main result in terms of the Riemann–Liouville fractional integ
Externí odkaz:
https://doaj.org/article/ba779ea83cc241178b3598cd1fb6bbfe
Autor:
Daniel Ianoşi, Adonia-Augustina Opriş
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-20 (2020)
Abstract In this paper we study the utility of the functional Pompeiu–Chebyshev in some inequalities. Some results obtained by Alomari will be generalized regarding inequalities with Pompeiu–Chebyshev type functionals, in which linear and positiv
Externí odkaz:
https://doaj.org/article/b8c77e7dd12f436e90093a08c6465b00
Publikováno v:
IEEE Access, Vol 8, Pp 159828-159838 (2020)
In this article, a novel digital predistortion (DPD) model based on complex-valued pipelined Chebyshev functional link recurrent neural network (CPCFLRNN) for joint compensation of wideband transmitter distortions and impairments is proposed. The fun
Externí odkaz:
https://doaj.org/article/d1edbb5f59e84217acd628c724b3608c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.