Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Charles R. Wall"'
Autor:
Charles R. Wall, Charles W. Trigg, Gerald C. Dodds, Huseyin Demir, Leon Bankoff, John Beidler, Murray S. Klamkin, Sidney Kravitz, Zalman Usiskin, C. Stanley Ogilvy, Kaidy Tan, Stanley Rabinowitz, C. J. Mozzochi, L. J. Upton, Michael Goldberg, J. Aczel, M. B. McNeil, Kenneth A. Ribet, S. Spital, Albert Wilansky, Bart Park, John H. Tiner
Publikováno v:
The College Mathematics Journal. 21:65
Autor:
Charles R. Wall
Publikováno v:
Canadian Mathematical Bulletin. 18:115-122
A divisor d of a positive integer n is a unitary divisor if d and n/d are relatively prime. An integer is said to be unitary perfect if it equals the sum of its proper unitary divisors. Subbarao and Warren [2] gave the first four unitary perfect numb
Autor:
Charles R. Wall
Publikováno v:
Proceedings of the American Mathematical Society. 33:39-42
Let d be a divisor of a positive integer n. Then d is a unitary divisor if d and nld are relatively prime, and d is a bi-unitary divisor if the greatest common unitary divisor of d and nld is 1. An integer is bi-unitaty perfect if it equals the sum o
Publikováno v:
Mathematics of Computation. 26:773-777
Upper and lower bounds are presented for the density of the integers n n for which σ ( n ) / n ≧ x \sigma (n)/n \geqq x , where σ ( n ) \sigma (n) is the sum of divisors of n n , and 1 ≦ x ≦ 5 1 \leqq x \leqq 5 .
Autor:
Charles R. Wall
Publikováno v:
Mathematics of Computation. 26:779-783
Let φ \varphi be Euler’s function. Upper and lower bounds are presented for D ( x ) D(x) , the density of the integers n n for which φ ( n ) / n ≦ x \varphi (n)/n \leqq x . The bounds, for x = 0 ( .01 ) 1 x = 0(.01)1 , have an average spread of
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783540057239
Upper and lower bounds are presented for the density of the integers n for which ac(n)/n ' x, where a(n) is the sum of divisors of n, and 1 _ x _ 5.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6b261becd064cfe1604641f831b27044
https://doi.org/10.1007/bfb0058798
https://doi.org/10.1007/bfb0058798
Autor:
Stanley Rabinowitz, Gao Ling, R. C. Lyness, James Propp, Herbert L. Holden, Henry E. Fettis, M. S. Klamkin, M. R. Spiegel, Douglas Lewan, Alberto Facchini, Daniel B. Shapiro, Carl P. McCarty, Loretta McCarty, Harold Reiter, J. L. Selfridge, Charles R. Wall, Oren N. Dalton, Steve Galovich, Lorraine L. Foster
Publikováno v:
Mathematics Magazine. 55:299
Autor:
Charles R. Wall
Publikováno v:
The American Mathematical Monthly. 92:587-587
Autor:
O. Kraft, J. L. Brenner, Rodica Simion, Charles R. Wall, Frank Schmidt, J. R. Kuttler, M. Slater
Publikováno v:
The American Mathematical Monthly. 90:400
Autor:
H. Kestelman, Manuel Blum, J. O. Shallit, M. S. Klamkin, Marlow Sholander, Vania D. Mascioni, Peter J. Giblin, M. Kuipers, L. Kuipers, Michael Gilpin, Robert Shelton, Miriam McCann, Craig K. Bailey, Charles R. Wall
Publikováno v:
Mathematics Magazine. 56:239