Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Charles Castaing"'
Publikováno v:
Mathematics, Vol 12, Iss 6, p 896 (2024)
This paper deals with the research of solutions of bounded variation (BV) to evolution inclusion coupled with a time and state dependent maximal monotone operator. Different problems are studied: existence of solutions, unicity of the solution, exist
Externí odkaz:
https://doaj.org/article/6cf9d4c1751242c1aa2826fba41f7f24
Publikováno v:
Mathematics, Vol 10, Iss 3, p 317 (2022)
This paper is devoted to the study of perturbation evolution problems involving time-dependent m-accretive operators. We present for a specific class of m-accretive operators with convex weakly compact-valued perturbation, some results about the exis
Externí odkaz:
https://doaj.org/article/9a5c0647cbec406e965d502c930444eb
Publikováno v:
Mathematics, Vol 8, Iss 9, p 1395 (2020)
This paper is devoted to the study of evolution problems involving fractional flow and time and state dependent maximal monotone operator which is absolutely continuous in variation with respect to the Vladimirov’s pseudo distance. In a first part,
Externí odkaz:
https://doaj.org/article/8ecd7e3db5754d19b910cf39d866a053
Publikováno v:
Applied Mathematics & Optimization. 87
Publikováno v:
Topological Methods in Nonlinear Analysis. :677-712
Publikováno v:
Set-Valued and Variational Analysis. 30:621-656
Publikováno v:
Vietnam Journal of Mathematics. 51:379-396
Publikováno v:
Evolution Equations & Control Theory. 9:219-254
In this paper, we study the existence of solutions for evolution problems of the form \begin{document}$ -\frac{du}{dr}(t) \in A(t)u(t) + F(t, u(t))+f(t, u(t)) $\end{document} , where, for each \begin{document}$ t $\end{document} , \begin{document}$ A
Publikováno v:
Fractional Calculus and Applied Analysis. 22:444-478
Publikováno v:
Journal of Fixed Point Theory and Applications. 23
In this paper, we consider evolution problems involving time-dependent maximal monotone operators in Hilbert spaces. Existence and relaxation theorems are proved.