Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Charles Bordenave"'
Publikováno v:
Probability Theory and Related Fields
Probability Theory and Related Fields, Springer Verlag, In press
Probability Theory and Related Fields, 2022, 182 (3-4), pp.1163-1181. ⟨10.1007/s00440-021-01079-9⟩
Probability Theory and Related Fields, Springer Verlag, In press, ⟨10.1007/s00440-021-01079-9⟩
Probability Theory and Related Fields, Springer Verlag, In press
Probability Theory and Related Fields, 2022, 182 (3-4), pp.1163-1181. ⟨10.1007/s00440-021-01079-9⟩
Probability Theory and Related Fields, Springer Verlag, In press, ⟨10.1007/s00440-021-01079-9⟩
Consider a square random matrix with independent and identically distributed entries of mean zero and unit variance. We show that as the dimension tends to infinity, the spectral radius is equivalent to the square root of the dimension in probability
Autor:
Charles Bordenave, Hubert Lacoin
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 21:1571-1616
It is a fact simple to establish that the mixing time of the simple random walk on a d-regular graph $G_n$ with n vertices is asymptotically bounded from below by $d/ ((d-2)\log (d-1))\log n$. Such a bound is obtained by comparing the walk on $G_n$ t
Autor:
Charles Bordenave
Publikováno v:
Astérisque. 422:109-147
Autor:
Charles Bordenave, Bastien
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, In press, ⟨10.1093/imrn/rnac045⟩
HAL
International Mathematics Research Notices, In press, ⟨10.1093/imrn/rnac045⟩
HAL
In operator algebra, the linearization trick is a technique that reduces the study of a non-commutative polynomial evaluated at elements of an algebra A to the study of a polynomial of degree one, evaluated on the enlarged algebra A x M r (C), for so
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ffcaef42eddf16331078ac0297dfa1f7
https://hal.science/hal-03029424/file/linearization_entropy3.pdf
https://hal.science/hal-03029424/file/linearization_entropy3.pdf
Autor:
Charles Bordenave, Simon Coste
Publikováno v:
Journal of Combinatorial Theory, Series B
Journal of Combinatorial Theory, Series B, Elsevier, 2019, 138, pp.196-205. ⟨10.1016/j.jctb.2019.02.001⟩
Journal of Combinatorial Theory, Series B, 2019, 138, pp.196-205. ⟨10.1016/j.jctb.2019.02.001⟩
Journal of Combinatorial Theory, Series B, Elsevier, 2019, 138, pp.196-205. ⟨10.1016/j.jctb.2019.02.001⟩
Journal of Combinatorial Theory, Series B, 2019, 138, pp.196-205. ⟨10.1016/j.jctb.2019.02.001⟩
Given a collection of n rooted trees with depth h, we give a necessary and sufficient condition for this collection to be the collection of h-depth universal covering neighborhoods at each vertex.
Comment: 7 pages, 4 figures ; comments are welco
Comment: 7 pages, 4 figures ; comments are welco
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), In press
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, In press
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), In press
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, In press
Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called "typical"
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2db09d79c234beeecdcb0fb204d01fd3
https://hal.archives-ouvertes.fr/hal-03447803
https://hal.archives-ouvertes.fr/hal-03447803
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, 2021, 26, ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26 (none), ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26, ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, 2021, 26, ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26 (none), ⟨10.1214/21-EJP666⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26, ⟨10.1214/21-EJP666⟩
We consider a square random matrix of size $N$ of the form $P(Y,A)$ where $P$ is a noncommutative polynomial, $A$ is a tuple of deterministic matrices converging in $\ast$-distribution, when $N$ goes to infinity, towards a tuple $a$ in some $\mathcal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ff451ed2f37abb67b01666c418af66f
https://hal.science/hal-03357298/document
https://hal.science/hal-03357298/document
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (4), pp.2971-2995. ⟨10.1214/20-AIHP1065⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 4 (2020), 2971-2995
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (4), pp.2971-2995. ⟨10.1214/20-AIHP1065⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (4), pp.2971-2995. ⟨10.1214/20-AIHP1065⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 4 (2020), 2971-2995
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (4), pp.2971-2995. ⟨10.1214/20-AIHP1065⟩
Considerons une matrice bi-stochastique aleatoire de taille $n$ et de la forme $MQ$ avec $M$ une matrice de permutation uniformement distribuee et $Q$ une matrice bi-stochastique fixee. Sous des conditions de parcimonie et de regularite sur $Q$, on d
Publikováno v:
Foundations of Computational Mathematics
Foundations of Computational Mathematics, In press
Foundations of Computational Mathematics, In press
Let $A$ be a rectangular matrix of size $m\times n$ and $A_1$ be the random matrix where each entry of $A$ is multiplied by an independent $\{0,1\}$-Bernoulli random variable with parameter $1/2$. This paper is about when, how and why the non-Hermiti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d02bec568dfa75746a99256b899680d5
http://arxiv.org/abs/2005.06062
http://arxiv.org/abs/2005.06062
Publikováno v:
Annales de l'Institut Henri Poincare (B) Probability and Statistics
Annales de l'Institut Henri Poincare (B) Probability and Statistics, In press
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (3), pp.2141-2161. ⟨10.1214/19-AIHP1033⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (3), pp.2141-2161. ⟨10.1214/19-AIHP1033⟩
MAP5 2017-16. 2016
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 3 (2020), 2141-2161
Annales de l'Institut Henri Poincare (B) Probability and Statistics, In press
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (3), pp.2141-2161. ⟨10.1214/19-AIHP1033⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (3), pp.2141-2161. ⟨10.1214/19-AIHP1033⟩
MAP5 2017-16. 2016
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 3 (2020), 2141-2161
Nous etablissons des bornes sur le rayon spectral pour une grande classe de matrices aleatoires creuses, qui inclut les matrices d’adjacence des graphes Erdős–Renyi inhomogenes. Nos bornes d’erreur sont optimales pour une grande classe de matr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed318d08c8e45c482c9a7c0ccd1fa1b3
https://hal.archives-ouvertes.fr/hal-02407111
https://hal.archives-ouvertes.fr/hal-02407111