Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Charanya Ravi"'
Autor:
Amalendu Krishna, Charanya Ravi
Publikováno v:
Ann. K-Theory 3, no. 2 (2018), 207-233
We prove some fundamental results like localization, excision, Nisnevich descent and the Mayer-Vietoris property for equivariant regular blow-up for the equivariant K-theory of schemes with an affine group scheme action. We also show that the equivar
Autor:
Charanya Ravi, Niko Naumann
Publikováno v:
Ann. K-Theory 5, no. 1 (2020), 141-158
If [math] is a henselian pair with an action of a finite group [math] and [math] is an integer coprime to [math] such that [math] , then the reduction map of mod- [math] equivariant [math] -theory spectra ¶ K G ( R ) ∕ n → ≃ K G ( R ∕ I )
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a74d062bff260fc474501d17ee259660
We prove versions of the Suslin and Gabber rigidity theorems in the setting of equivariant pseudo pretheories of smooth schemes over a field with an action of a finite group. Examples include equivariant algebraic $K$-theory, presheaves with equivari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::60ff5bc53b715a7f52f4019c07a17536
Autor:
Charanya Ravi
We prove a Grothendieck–Lefschetz theorem for equivariant Picard groups of non-singular varieties with finite group actions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::500bb6fd3b32ec48b4206ee665173215
http://hdl.handle.net/10852/72550
http://hdl.handle.net/10852/72550
Autor:
Charanya Ravi, Amalendu Krishna
Publikováno v:
Ann. K-Theory 2, no. 2 (2017), 235-275
Let $G$ be an affine group scheme over a noetherian commutative ring $R$. We show that every $G$-equivariant vector bundle on an affine toric scheme over $R$ with $G$-action is extended from $\Spec(R)$ for several cases of $R$ and $G$. We show that g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::563519a5316cd2700040ec5968ce1bac
https://projecteuclid.org/euclid.akt/1510841643
https://projecteuclid.org/euclid.akt/1510841643