Zobrazeno 1 - 10
of 43 320
pro vyhledávání: '"Chao-Yang"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Guo, Yong-Peng, Zou, Geng-Yan, Ding, Xing, Zhang, Qi-Hang, Xu, Mo-Chi, Liu, Run-Ze, Zhao, Jun-Yi, Ge, Zhen-Xuan, Peng, Li-Chao, Xu, Ke-Mi, Lou, Yi-Yang, Ning, Zhen, Wang, Lin-Jun, Wang, Hui, Huo, Yong-Heng, He, Yu-Ming, Lu, Chao-Yang, Pan, Jian-Wei
Fusing small resource states into a larger, fully connected graph-state is essential for scalable photonic quantum computing. Theoretical analysis reveals that this can only be achieved when the success probability of the fusion gate surpasses a spec
Externí odkaz:
http://arxiv.org/abs/2412.18882
Autor:
Lin, Rui, Zhong, Han-Sen, Li, You, Zhao, Zhang-Rui, Zheng, Le-Tian, Hu, Tai-Ran, Wu, Hong-Ming, Wu, Zhan, Ma, Wei-Jie, Gao, Yan, Zhu, Yi-Kang, Su, Zhao-Feng, Ouyang, Wan-Li, Zhang, Yu-Chen, Rui, Jun, Chen, Ming-Cheng, Lu, Chao-Yang, Pan, Jian-Wei
Assembling increasingly larger-scale defect-free optical tweezer-trapped atom arrays is essential for quantum computation and quantum simulations based on atoms. Here, we propose an AI-enabled, rapid, constant-time-overhead rearrangement protocol, an
Externí odkaz:
http://arxiv.org/abs/2412.14647
Autor:
Wang, Can, Liu, Feng-Ming, Chen, He, Du, Yi-Fei, Ying, Chong, Wang, Jian-Wen, Huo, Yong-Heng, Peng, Cheng-Zhi, Zhu, Xiaobo, Chen, Ming-Cheng, Lu, Chao-Yang, Pan, Jian-Wei
Despite the significant progress in superconducting quantum computation over the past years, quantum state measurement still lags nearly an order of magnitude behind quantum gate operations in speed and fidelity. The main challenge is that the strong
Externí odkaz:
http://arxiv.org/abs/2412.13849
Autor:
Gao, Dongxin, Fan, Daojin, Zha, Chen, Bei, Jiahao, Cai, Guoqing, Cai, Jianbin, Cao, Sirui, Zeng, Xiangdong, Chen, Fusheng, Chen, Jiang, Chen, Kefu, Chen, Xiawei, Chen, Xiqing, Chen, Zhe, Chen, Zhiyuan, Chen, Zihua, Chu, Wenhao, Deng, Hui, Deng, Zhibin, Ding, Pei, Ding, Xun, Ding, Zhuzhengqi, Dong, Shuai, Dong, Yupeng, Fan, Bo, Fu, Yuanhao, Gao, Song, Ge, Lei, Gong, Ming, Gui, Jiacheng, Guo, Cheng, Guo, Shaojun, Guo, Xiaoyang, He, Tan, Hong, Linyin, Hu, Yisen, Huang, He-Liang, Huo, Yong-Heng, Jiang, Tao, Jiang, Zuokai, Jin, Honghong, Leng, Yunxiang, Li, Dayu, Li, Dongdong, Li, Fangyu, Li, Jiaqi, Li, Jinjin, Li, Junyan, Li, Junyun, Li, Na, Li, Shaowei, Li, Wei, Li, Yuhuai, Li, Yuan, Liang, Futian, Liang, Xuelian, Liao, Nanxing, Lin, Jin, Lin, Weiping, Liu, Dailin, Liu, Hongxiu, Liu, Maliang, Liu, Xinyu, Liu, Xuemeng, Liu, Yancheng, Lou, Haoxin, Ma, Yuwei, Meng, Lingxin, Mou, Hao, Nan, Kailiang, Nie, Binghan, Nie, Meijuan, Ning, Jie, Niu, Le, Peng, Wenyi, Qian, Haoran, Rong, Hao, Rong, Tao, Shen, Huiyan, Shen, Qiong, Su, Hong, Su, Feifan, Sun, Chenyin, Sun, Liangchao, Sun, Tianzuo, Sun, Yingxiu, Tan, Yimeng, Tan, Jun, Tang, Longyue, Tu, Wenbing, Wan, Cai, Wang, Jiafei, Wang, Biao, Wang, Chang, Wang, Chen, Wang, Chu, Wang, Jian, Wang, Liangyuan, Wang, Rui, Wang, Shengtao, Wang, Xinzhe, Wei, Zuolin, Wei, Jiazhou, Wu, Dachao, Wu, Gang, Wu, Jin, Wu, Shengjie, Wu, Yulin, Xie, Shiyong, Xin, Lianjie, Xu, Yu, Xue, Chun, Yan, Kai, Yang, Weifeng, Yang, Xinpeng, Yang, Yang, Ye, Yangsen, Ye, Zhenping, Ying, Chong, Yu, Jiale, Yu, Qinjing, Yu, Wenhu, Zhan, Shaoyu, Zhang, Feifei, Zhang, Haibin, Zhang, Kaili, Zhang, Pan, Zhang, Wen, Zhang, Yiming, Zhang, Yongzhuo, Zhang, Lixiang, Zhao, Guming, Zhao, Peng, Zhao, Xianhe, Zhao, Xintao, Zhao, Youwei, Zhao, Zhong, Zheng, Luyuan, Zhou, Fei, Zhou, Liang, Zhou, Na, Zhou, Naibin, Zhou, Shifeng, Zhou, Shuang, Zhou, Zhengxiao, Zhu, Chengjun, Zhu, Qingling, Zou, Guihong, Zou, Haonan, Zhang, Qiang, Lu, Chao-Yang, Peng, Cheng-Zhi, Zhu, XiaoBo, Pan, Jian-Wei
In the relentless pursuit of quantum computational advantage, we present a significant advancement with the development of Zuchongzhi 3.0. This superconducting quantum computer prototype, comprising 105 qubits, achieves high operational fidelities, w
Externí odkaz:
http://arxiv.org/abs/2412.11924
We propose hardware-efficient schemes for implementing logical H and S gates transversally on rotated surface codes with reconfigurable neutral atom arrays. For logical H gates, we develop a simple strategy to rotate code patches efficiently with two
Externí odkaz:
http://arxiv.org/abs/2412.01391
Neutral atom array has emerged as a promising platform for quantum computation due to its high-fidelity two-qubit gate, arbitrary connectivity and remarkable scalability. However, achieving fault-tolerant quantum computing with neutral atom necessita
Externí odkaz:
http://arxiv.org/abs/2411.04664
Autor:
Zhang, Yu-Chen, Cheng, Hao-Wen, Zengxu, Zhao-Qiu, Wu, Zhan, Lin, Rui, Duan, Yu-Cheng, Rui, Jun, Chen, Ming-Cheng, Lu, Chao-Yang, Pan, Jian-Wei
In 1927, during the fifth Solvay Conference, Einstein and Bohr described a double-slit interferometer with a "movable slit" that can detect the momentum recoil of one photon. Here, we report a faithful realization of the Einstein-Bohr interferometer
Externí odkaz:
http://arxiv.org/abs/2410.10664
Autor:
Tan, Chao-Yang, Gao, Ze-Feng, Yang, Huan-Cheng, Liu, Zheng-Xin, Liu, Kai, Guo, Peng-Jie, Lu, Zhong-Yi
The time-reversal symmetry is thought to be a necessary condition for realizing valley Hall effect. If the time-reversal symmetry is broken, whether the valley Hall effect can be realized has not been explored. In this letter, based on symmetry analy
Externí odkaz:
http://arxiv.org/abs/2410.00073
Autor:
Wu, Hui-Nan, Li, Yu-Huai, Li, Bo, You, Xiang, Liu, Run-Ze, Ren, Ji-Gang, Yin, Juan, Lu, Chao-Yang, Cao, Yuan, Peng, Cheng-Zhi, Pan, Jian-Wei
Publikováno v:
Phys. Rev. Lett. 133, 020201 (2024)
The emergence of quantum mechanics and general relativity has transformed our understanding of the natural world significantly. However, integrating these two theories presents immense challenges, and their interplay remains untested. Recent theoreti
Externí odkaz:
http://arxiv.org/abs/2408.03259